Assessing asymmetric fault-tolerant software

By Peter Popov and Lorenzo Strigini; 21st International Symposium on Software Reliability Engineering (ISSRE 2010), San Jose, California, USA, 2010.

ABSTRACT
The most popular forms of fault tolerance against design faults use "asymmetric" architectures in which a "primary" part performs the computation and a "secondary" part is in charge of detecting errors and performing some kind of error processing and recovery. In contrast, the most studied forms of software fault tolerance are "symmetric" ones, e.g. N- version programming. The latter are often controversial, the former are not. We discuss how to assess the dependability gains achieved by these methods. Substantial difficulties have been shown to exist for symmetric schemes, but we show that the same difficulties affect asymmetric schemes. Indeed, the latter present somewhat subtler problems. In both cases, to predict the dependability of the fault-tolerant system it is not enough to know the dependability of the individual components. We extend to asymmetric architectures the style of probabilistic modeling that has been useful for describing the dependability of "symmetric" architectures, to highlight factors that complicate the assessment. In the light of these models, we finally discuss fault injection approaches to estimating coverage factors. We highlight the limits of what can be predicted and some useful research directions towards clarifying and extending the range of situations in which estimates of coverage of fault tolerance mechanisms can be trusted.

Full text in pdf format.


The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

CSR Home | CSR Research Projects | CSR Publications | School of Informatics | City University


Page maintained by: Lorenzo Strigini