
©2003, P. Popov and L. Strigini

Diversity with Off-The-Shelf Components
A Study with SQL Database Servers

Peter Popov, Lorenzo Strigini
Centre for Software Reliability, City University, London

{ptp,strigini}@csr.city.ac.uk

Abstract
Fault tolerance is often the only feasible remedy available
to a user or integrator when using insufficiently depend-
able off-the-shelf software products. In particular, modu-
lar redundancy with diversity, as e.g. in N-version soft-
ware, may be an affordable solution, but there has been
little study of its practical effectiveness and implementa-
tion difficulties with off-the-shelf components. We have
started an experiment to help to remedy this situation. We
report preliminary observations from the development and
early use of the experimental set-up.

1. Background
When confronted with the dependability limitations of

off-the-shelf (OTS) software, the best and often the only
practical option available to a system integrator is soft-
ware fault tolerance [1], using modular redundancy with
diversity (e.g. N-version software) or checker compo -
nents (implemented for instance in the form of wrappers).
The alternatives - extra V&V activities or changes to the
code - are impossible for most proprietary software, as the
source code and design documentation are not available,
and too expensive, in most other cases.

The use of wrappers is a reasonably popular solution.
Modular redundancy with diverse OTS software is less
so, although there is research interest (e.g., [2, 3]), espe-
cially for improving security (intrusion tolerance). Its
limited application may be due to cost issues (cost of the
OTS products, and even more of the possibly difficult
integration of complex OTS parts into a redundant con-
figuration) and/or to the difficulty of assessing the effec-
tiveness of multiple version software [4].

To explore these issues and provide evidence for or
against diverse modular redundancy for a reasonably
complex category of widely-used OTS software, we are
running an experiment with SQL database servers. We
use a test harness (developed in co-operation with the
Technical University in Plovdiv, Bulgaria) to run multiple
OTS SQL servers in parallel on the same sequence of
inputs (queries) and log any failures. The architecture is
schematically shown in Fig. 1.

Interbase
RDBMS

Interbase
DB

Oracle
RDBMS

Oracle
DB

MS SQL
RDBMS

MS SQL
DB

.....

Client 1 Client 2 Client N.

.....

Diverse off-the-shelf
versions of SQL
relational database
server

Simulated client
applications (pseudo-
random processes)

Wrapper) (DCOM Application Server)

Fig. 1 Architecture for experiments with diverse database servers
(simplified view). The wrapper copies the clients requests (SQL
queries and control commands) to the multiple databases, collects
and compares their responses, and produces log data for the ex-
periment logs. The database products listed are just examples
among those that can be used, in any combination of (identical or
diverse) servers. The servers are distributed over multiple com-
puters on a LAN, on similar or diverse operating systems.

2. Diverse-redundant server designs
Our experimental implementation is not a full-fledged

fault-tolerant server. For instance, it has no automated
mechanism for recovery of a corrupted database version..
However, we had to solve some of the same problems that
would affect the design of a proper fault-tolerant server. In
what follows, it is important to remember that no change
was made to the OTS database servers.

Two suitable redundancy schemes are N-version pro-
gramming (NVP) and N-version self-checking program-
ming (NSCP), as they are called in [5]. Either can be ap-
plied in our set-up, by appropriate configuration of the
wrapper component. An NSCP architecture relies on the

individual servers guaranteeing clean failures: the server
versions only issue correct outputs, or no output. NSCP
configurations can thus exploit diversity both for reliabil-
ity and for speed: the first response produced for a query
can be forwarded to the client. With changes to the wrap-
per, the scheme can be turned into one with stand-by re-
dundancy to reduce load on the platforms (by logging que-
ries and replaying them to the stand-by versions when
necessary), or with load balancing (by submitting read-
only transaction only to a subset of the servers). The limit

of NSCP is its dependence on the assumption of clean or
perfectly detectable failures. An NVP configuration
avoids this limitation as it uses voting among the ver-
sions outputs to both detect and mask (whenever possi-
ble) failures of the servers.

The main design problem is how to preserve both con-
sistency among the multiple databases and atomicity of
transactions. If the wrapper simply broadcasts each
query to the database server versions, each server version
will serve them in an order that is affected both by the
variable delays of the communication mechanisms and by
the different, and unknown, policies applied by the serv-
ers to ensure acceptable throughput while preserving
transaction atomicity. So, correct processing by all server
versions may produce inconsistencies between the data-
base versions. This is avoided by the wrapper enforcing
some degree of synchronization, delaying queries as ap-
propriate. For the NSCP scheme, it is sufficient that
write transactions be strictly synchronized on all server

versions. For voting, in practice the same order must be
imposed on the servers for all transactions, bringing sig-
nificant synchronization overhead. In either case, the
overhead cost must be compared against the dependability
improvements achieved, and against the cost of a compa-
rably dependable, but not OTS, database server.

Another practical design problem is that the SQL serv-
ers implement different subsets or supersets of the SQL-
92 and SQL-99 standards, and also differ in details of the
syntax of the query language they accept. Since client
programs would normally be written with one of the vari-
ous server types in mind, the wrapper would need both
to check that all queries are acceptable to all server ver-
sions, and to translate them into their respective di a-
lects . Both functions appear reasonably simple to i m-
plement. In our own experimental set-up, we simply use
the subset of SQL that is common to all the servers we are
testing, and the translation is mostly performed off-line.

3. Measuring the efficacy of diversity
We plan to run the servers for long periods of time

with various demand profiles, compare the counts of fail-
ures affecting only one server against those affecting two
or more, and thus estimate the reliability advantage (if
any) given by diversity with redundancy. A plan for sta-
tistical measurement requires:
• a choice of usage profile: the statistical process of que-

ries and transactions. We plan to use three databases
with various reference loads: a warehouse database
derived from a real-life application; a simplified
banking application, and an implementation of the
TPC-C benchmark;

• an oracle for detecting failures. We are using co m-
parison of responses from the servers, time-outs, peri-
odical comparisons of database contents, and, for the
banking application, checks on invariants on the

database contents, guaranteed by the way the simulated
clients generate their queries.
The dependability gains that diversity gives depend, for

a given usage profile, on the specific redundant configura-
tion (set of server versions used, NVP or NSCP scheme),
and on the probability of query sequences that cause some
server versions to fail, but few enough for the failure to be
masked. Within limits, the effects of different configura-
tions can be estimated from a single measurement cam-
paign, feeding equivalent sequences of queries (streams
of queries, translated into the server versions dialects
and synchronized to respect certain constraints) to the
multiple OTS servers. We can expect many failures to be
due to Heisenbugs [6] , i.e., dependent on rare coinci-
dences between states of the databases, the applications
and the operating systems of the server computers. So,
reliability may be influenced by details such as the physi-
cal allocation of server processes to computers. In par-
ticular, we will take care to discriminate any gain due spe-
cifically to diversity from the gain due to the simple sepa-
ration of redundant servers on separate computers.

A preliminary evaluation step concerns fault diversity
rather than failure diversity. By manual selection of test
cases, one can check whether the redundant configuration
would tolerate the known bugs in the lists of bugs reported
for the various OTS servers. This phase is well under way
and producing encouraging results, although these cannot
be translated into measures of reliability increases. For
instance, out of 62 bugs reported for two OTS servers over
a period of one year, and affecting a common subset of the
SQL language, there were only 4 for which coincident
failures of the two servers were produced.

Acknowledgments
This work was supported by the U.K. Engineering and Physical
Sciences Research Council within project DOTS, Diversity with
Off-The-Shelf Components . The test harness was built by A.
Kostov, V. Mollov and D. Selensky. Ilir Gashi performed the
fault diversity testing.

References
[1] P. Popov, L. Strigini and A. Romanovsky, "Diversity for off-
the-Shelf Components", DSN 2000 Fast Abstracts supplement,
New York, NY, USA, 2000, pp. B60-B61.
[2] J. Reynolds, J. Just, et al., "The Design and Implementation
of an Intrusion Tolerant System", Proc. DSN 2002, Washington,
D.C., USA, 2002, pp. 285-292.
[3] P. Verissimo, N. F. Neves and M. Correia, "The Middleware
Architecture of MAFTIA: A Blueprint", Proc. IEEE Third In-
formation Survivability Workshop (ISW-2000), Boston, Massa-
chusetts, USA, 2000.
[4] B. Littlewood, P. Popov and L. Strigini, "Modelling software
design diversity - a review", ACM CS, 33, pp. 177 - 208, 2001.
[5] J. C. Laprie, J. Arlat, et al., "Definition and Analysis of
Hardware-and-Software Fault-Tolerant Architectures", IEEE
Computer, 23, pp. 39-51, 1990.
[6] J. Gray, "Why do computers stop and what can be done about
it?", Proc. SRDSDS-5, Los Angeles, CA, USA, 1986, pp. 3-12.

