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Addenda to section 3. Behaviour of the proposed method

A designer would not need to forecast the detailed responses of the diagnosis algorithm, as they

are 'normatively correct'. Sill we may want to understand the general pattern of response and

how it is affected by the parameters of the failure model. Here, we study how the posterior

probability of the conjecture “the component is permanently faulty” changes over time when the

test results are a sequence of either s consecutive successes or f  consecutive failures. Assume

that this sequence starts after the i-th test round,  at which time Ppost(Perm(i))=p0. We define

these two functions:

Ppost(s, p0) = Ppost(Perm(i+s) | Ppost(Perm(i) =p0  , success(j) for j=i+1,...i+s)

Ppost(f, p0) = Ppost(Perm(i+f) | Ppost(Perm(i) =p0  , failure(j) for j=i+1,...i+f)

The expressions of the two probabilities above

Ppost(f, p0) and Ppost(s, p0)  are obtained by repetedly applying equation (2), starting with a

Ppost(Perm(i))=p0. The following equations can be proved true by induction:

Ppost(f, p0)=
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NOTE: In the following subsections, all the results indicated as “approximate”  have been

proven to have negligible error under the (sufficient but not necessary) condition that the
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probability of observing failures becomes at least ten times higher after a component becomes

permanently faulty:

P failure i Perm i Perm i P failure i Perm i( ( ) ( ) ( )) . ( ( ) ( ))∧ ¬ ¬ − < ⋅| |1 0 1

or, in other words, that transient faults do make a sizeable difference in the probability that the

component fails a test. Details are in [9].

3.1  Effect of sequences of successes

As tests accumulate in which only successes are observed, the probability of permanent fault

asymptotically tends to a limiting value L:

L P Perm i s P Perm i p success j for all j i i spost post= + = ∈ + +( )
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Usually, L >0: there is a non-zero probability of the component being permanently faulty, even

though it has never failed a test (yet). The expression forPpost(s, p0) is given in the box at the

beginning of this section.  L takes different values depending on whether:
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If, as is usually the case, (3) is verified, one obtains:

L
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As can be seen from (4), if P(success(i)|¬Perm(i-1))>2*P(success(i) |Perm(i-1)), L is small

(L<θp).

If p0<L , Ppost(s, p0)  quickly tends to L as s increases. If p0>L, Ppost(s, p0) decreases

approaching L (Fig. 9). This decrease can be described in terms of a parameter c , defined as:

c
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The number s of successes needed to reach a certain value of Ppost(s, p0)   is approximately

proportional to 1/c, so long as Ppost(s, p0) >>L. This behaviour can be observed in Fig. 9.
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Figure 9. Ppost(s, p0) as a function of the number of consecutive successes, s,
starting from  p0=0.999. For s→∞ , each curve tends to its own asymptote L ,

very close to 0 .

Useful equations (used for most of the following mathematical deriv

P(failure(i)∧ ¬Perm(i)|¬Perm(i-1))=P(failure(i)|¬Perm(i))-θp*P(failure(i)|Perm(i))

P(success(i)∧ ¬Perm(i)|¬Perm(i-1))=P(success(i)|¬Perm(i))-θp*P(success(i)|Perm(i))

P(failure(i)|Perm(i-1))=P(failure(i)|Perm(i))

P(success(i)|Perm(i-1))=P(success(i)|Perm(i))

P(success(i)|Perm(i-1))=1-P(failure(i)|Perm(i-1))

log ( x*y) = log(x)+ log(y)

log(1/x)=-log(x)

Why Ppost(s,p0) is approximately proportional to 1/c so long as Ppost

The function Sp0(p) gives the number of consecutive successes that one would need to observe

for the probability Ppost(Perm) to decrease from p0 to p. Here we are only considering the case

in which p and p0 are greater than L (p0>p>L). The opposite case (p0<p<L) has been studied

as well but we will not report it as it is not of much interest. An expression for Sp0(p)  can be

obtained  by solving for s the equation Ppost(s, p0) =p.
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Using the definition of c  we can write
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One can see that, when p>>L, log logp
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Now log(x*y)=log (x) + log (y) and therefore:
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C(p0) is a constant value (i.e. it does not depend on p), such that Sp0(p0)=0.

The absolute error produced in using this approximate expression for pS p0( ) is

1
1
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Conclusion: if p>>L  (p0>p>>L), the number of successes s required to reduce

Ppost(po,s) from p0 to p is approximately proportional to c

3.2  Effect of sequences of failures

Ppost(f, p0) obviously increases with f and tends to 1 for f→∞. We will use the notation

Fp0(p) to denote the  number of consecutive failures that need to be observed for Ppost(f, p0) to

reach a value p >p0. Figure 10 shows two curves of Ppost(f, p0) as a function of f, for p0=0.

The curves can be described in terms of two parameters:

a P Perm i Perm i= ¬ −( )log ( ( ) | ( ))1 ,

(related to the rate of occurrence of permanent faults) and

b
P failure i Perm i Perm i

P failure i Perm i
= ∧ ¬ ¬ −

−






log
( ( ) ( ) | ( ))

( ( ) | ( ))

1

1

(describing how much a permanent fault increases the probability of failure))

To give an idea of the speed of increase of Ppost(f, p0), we can say that F0(0.5)≈a/b

(with negligible error bounded by log( . )

log

0 9 +θ
θ

p

p
 ); for any pair p̂ ,p0  with 1> p̂>p0 >0, the

number of failures, f, needed to make Ppost(f, p0) = p̂  is approximately proportional to  1

b
:

Fp0( p̂ ) ∝  1

b
(this is an approximation with negligible error if p0>>θp)

The shape of each curve is determined by the system parameters, not by p0. If p0≠0, it is

sufficient to shift the origin of the x  axis so that the chosen curve intersects the point (0,p0).
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Figure 10. Increase of Ppost(f, p0) as a function of the number of consecutive
failures, f, starting from the value p0=0. For f→∞ , all curves tend to 1.

How we derived the results concerning a and b:

The function Fp0(p) gives the number of consecutive failures to be observed for the probability

Ppost(Perm) to increase from p0 to p. We will only consider F0(p), considering that for any

p0≠0 one can write Fp0(p)=F0(p)-F0(p0). An expression for F0(p) can be obtained  by solving

for f the equation Ppost(f, 0) =p.
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We can approximate the previous equation, with negligible error when p>>θp (the error has

been proved to  be  negl igible  under  the  suff ic ient  condi t ion
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 by b and log(θp) by a we will rewrite the

previous expression as (  log(a/b)=log(a)-log(b) ):
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One can see that the approximate expression of F0(p)  is proportional to b and that for p=0.5 we

have F0(0.5)≈a/b.

If p>p0>>θp:

pF F Fp p p
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b b
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b b
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p p

p p
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As one can see, Fp0( p̂ ) ∝  1

b

3.3 Useful descriptive measures

For given values of the parameters,  i.e., characteristics of the component and of the testing

procedure, the diagnosis algorithm needs simply to apply equation (2) after each test round.

This produces the correct posterior probability of permanent fault, as a function of the whole

past history of observed successes and failures. Every possible history will produce a different

evolution of Ppost(Perm). To understand the influence of the parameters, some less detailed

description is desirable: we now define two measures that describe important macroscopic

aspects of how Ppost(Perm)  changes with test results, and will be useful in the rest of the paper.

3.3.1 Reaction to observing a first failure

In the operation of a system, long series of successes will usually separate any failures or

clusters of failures. So, a common case is that a failure is observed at a test round i  when

Pprior(Perm(i)) ≈L. A useful descriptive measure is thus FL(0.5),  the number of consecutive

failures which have to be observed for Ppost(Perm)  to increase from L to 0.5. This value is

approximated by:

LF
a

b

P failure i Perm i

b b
p L( . )

log ( ( ) | ( ))
log( )0 5

1≈ − ( ) ≈ ⋅ +θ

Why LF
a

b
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log( )0 5
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If P success i Perm i Perm i

P success i Perm i

( ( ) ( ) ( ))

( ( ) ( ))
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−

>|

|

1

1
1 , which is usually the case, we have that:
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(( ) ( ))i Perm i

p

p

| −






+



























1
θ

θ

Seeing that P(failure(i)∧ ¬Perm(i)|¬Perm(i-1))=P(failure(i)|¬Perm(i))-θp*P(failure(i)|Perm(i-1)):

P failure i Perm i P failure i Perm i

P failure i Perm i

P success i Perm i P success i Perm i

P failure i Perm i

P success i Perm i P success i Perm i

( ( ) ( )) ( ( ) | ( ))

( ( ) ( ))

( ( ) ( )) ( ( ) | ( ))

( ( ) ( ))

( ( ) ( )) ( ( ) | (

|

|

|

|

|

− − ¬ −
−

= ¬ − − −
−

=

= ¬ − − −

1 1

1

1 1

1

1 1))))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

P success i Perm i p

P success i Perm i p

P failure i Perm i

L

P success i Perm i p

P failure i Perm i

|

|

|

|

|

− ⋅
⋅ − ⋅

−
=

= ⋅ − ⋅
−

1

1

1

1 1

1

θ
θ

θ

We can rewrite:

0
1 1

1

1
1

F L
b L

L
p P success i Perm i
L P failure i Perm i

p

p
( ) log log

( ( ) ( ))
( ( ) ( ))

= ⋅ −
−

−
⋅ ⋅ −

⋅ −






+
























θ θ

θ

|
|

= ⋅ −
−

−
−







= ⋅ − − ⋅ −[ ]( )

≈ ⋅ − −[ ]( )

1 1

1

1

1

1
1 1

1
1

b L P failure i Perm i

b
L P failure i Perm i

b
P failure i Perm i

log log
( ( ) ( ))

log ( ) ( ( ) ( ))

log ( ( ) ( ))

|

|

|

Seeing that  FL(0.5) =F0(0.5) -F0(L) and that  F0(0.5) ≈a/b we have the result:

LF
a

b

P failure i Perm i

b
( . )

log ( ( ) | ( ))
0 5 ≈ − ( )

We can also write

 FL(0.5) =F0(0.5) -F0(L)=
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= ⋅ −
⋅ − ∧ ¬ ¬ −

−
−







+
















−
−

+
⋅ − ∧ ¬ ¬ −

1
0 5

0 5 1
1

1

1

1

1
1

b

P failure i Perm i Perm i
P failure i Perm i

p p

p

L

L
P failure i Perm i Perm i

P failure i

log . log

.
( ( ) ( ) ( ))

( ( ) ( ))

log log

( ( ) ( ) ( ))
( ( )

|
|

|

θ θ

θ

|| Perm i
p p

p

( ))−
−







+






−











1
θ θ

θ

= ⋅
⋅ − ∧ ¬ ¬ −

−
−







+

















−
−

+ ⋅ − ∧ ¬ ¬ −

1 0 5

0 5 1
1

1

1

1
1

1

b P failure i Perm i Perm i
P failure i Perm i

p p

L
L

P failure i Perm i Perm i

P failure i Perm i

log
.

.
( ( ) ( ) ( ))

( ( ) ( ))

log log
( ( ) ( ) ( ))

( ( ) (

|
|

|

|

θ θ

−−
−







+













1))

θ θp p

Under the assumption that  P failure i Perm i Perm i P failure i Perm i( ( ) ( ) | ( )) . ( ( ) | ( ))∧ ¬ ¬ < ⋅0 1 , the first

logarithm from the left is approximately zero. Since log
1

1− L
 is also close to zero, we can write

FL(0.5) =F0(0.5)-F0(L)≈ 1
1

1

1b
L

P failure i Perm i Perm i

P failure i Perm i
p p⋅ ⋅ − ∧ ¬ ¬ −

−
−







+















log
( ( ) ( ) ( ))

( ( ) ( ))

|

|
θ θ

1

b
L p⋅ +( )log θ .

FL(0.5) is a good indicator of how rapidely the probability of permanent fault grows when one

first starts observing failures. Of course, it is usually a non-integer. Since test rounds happen in

integer numbers, the diagnosis can only be updated after an integer number of observations,

and any decision based on it will be somewhat insensitive to small errors in parameter values.

3.3.2 How frequently tests must fail to produce a high posterior probability of

permanent faults

It is also interesting to consider the case in which successes and failures alternate (not

necessarily  in a regular pattern), causing Ppost(Perm) to oscillate. We would then like to know

by how much failures must outnumber successes for our diagnosis to veer decidedly towards

“permanently faulty”.

It turns out that, as long as Ppost(Perm)>>L, the effects of one failure will be completely

cancelled by a series of b/c  successes. These need not be in an uninterrupted sequence,

provided every additional  failure is followed by b/c additional successes.  With a higher ratio

of successes to failures, Ppost(Perm) decreases  towards L; with a lower ratio, it increases

towards 1. We shall call  the value b/c  the success/failure ratio threshold ,  or Tsfr.
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Why Tsfr.=b/c

Fp1(p2) gives the number of failures that will increase Ppost(perm) from p1 to p2 while Sp2(p1)

gives the number of successes that will return to the probability p1 from p2. The ratio 
S p

F p
p

p

2

1

1

2

( )

( )

gives the average number of successes that will cancel the effects of one failure.  From the

previous studies it has been said that if p1,p2>>max (L,θp), Fp1(p2) is proportional to 1/b,

while Sp1(p2) is proportional to 1/c. Thus, if p1,p2>>max (L,θp), we can expect 
S p

F p
p

p

2

1

1

2

( )

( )
 not

to depend on p1 and p2  but to be approximately constant:

S p

F p

b

c
p

p

2

1

1

2

( )

( )
≈ .

We will now show it analytically.

Fp1(p2) and  Sp1(p2) are well approximated (when p1,p2>>max(L,θp)) by :

pS p
c

p

p

p
P success i Perm i P success i Perm i

P success i Perm i

p
P success i Perm i P success i Perm i

P success i

2 1
1 1 2

1 1

1
1 1

1

2
1 1

( ) log log

( ( ) ( )) ( ( ) ( ))
( ( ) ( ))

( ( ) ( )) ( ( ) ( ))
( (

≈ ⋅ −
−

+
⋅ − − ¬ −

−













⋅ − − ¬ −

| |
|

| |
)) ( ))

log log

| Perm i

c

p

p

p

p

−































= ⋅ −
−

+






1

1 1 2

1 1

1

2

and

pF p
b

p

p

p

p1 2
1 1 1

1 2

1

2
( ) log log≈ ⋅ − −

−
−







Under the previous conditions on p1 and p2, the ratio 
S p

F p
p

p

2

1

1

2

( )

( )
 is approximately  constant value

and independent of values of p1 and p2:

S p

F p

c
p
p

p
p

b
p
p

p
p

b

c
p

p

2

1

1

2

1 1 2
1 1

1
2

1 1 1
1 2

1
2

( )

( )

log log

log log

≈
⋅ −

−
+





⋅ − −
−

−





=

Table 3 summarises the parameters and descriptive measures defined in this section.
Intermediate parameters Descriptive measures

 a P Perm i Perm i= ¬ −( )log ( ( ) | ( ))1

b
P failure i Perm i Perm i

P failure i Perm i
= ∧ ¬ ¬ −

−






log
( ( ) ( ) | ( ))

( ( ) | ( ))

1

1

c
P success i Perm i

P success i Perm i Perm i
= −

∧ ¬ ¬ −






log
( ( ) ( ))

( ( ) ( ) ( ))

|

|

1

1

L
p

P success i Perm i
P success i Perm i

= ¬ −
−

−

θ
( ( ) ( ))
( ( ) ( ))

|
|

1
1

1

LF
a

b

P failure i Perm i

b
( . )

log ( ( ) | ( ))
0 5 ≈ − ( )

sfrT
b

c
=

Table 3. Expressions for the intermediate parameters and the descriptive
measures defined
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Addenda to section 4.Application to different scenarios

Table 4 lists the hypotheses characterising the three scenarios. Taking account of the additional

model parameters we define here, the expressions defined in Section 3 become rather complex;

they can be found in the Appendix. Here, we specify the assumptions for the three scenarios

and describe the general behaviour of the diagnosis algorithm (details are in [9]):

Scenario A: All faults in a component cause it to fail tests. So, a test success implies

certainty that the component is non-faulty (as can be confirmed by applying equation (2) using

success as the value for evidence(i)). Clearly, L = 0. The only non-obvious problem in

diagnosis is discriminating between transient and permanent faults, after test failures are

observed.

Scenario B: Even when faulty, a component may still produce correct test data, with

probabilities αp if there are permanent faults and α t in case of transient faults only. The

parameters αp and αt  describe both the fault manifestation characteristics of the component

(e.g., rate of intermittent manifestation of permanent faults) and the coverage of the tests.  The

adjudication is 'perfect' (error-free).

The implications of sequences of successes are less obvious than in Scenario A. Observing a

success does not warrant certainty that the component is non-faulty: in particular, the limit L is

greater than 0. The expressions for Ppost(f,p0) and Ppost(s,p0) in this scenario are given in the

appendix in equations (A2) and (A3), respectively. If αt = αp, Ppost(f,p0) is the same as for

Scenario A. Indeed, a test failure means that there is a fault (since we assume perfect

adjudication): all that the diagnosis has to do is to assign probabilities of this being permanent

vs transient, based on the ratio of their respective probabilities of causing a failure. With

α t= α p , this ratio is the same as in Scenario A. For a given pair (s ,p0), and if

P(success(i)∧¬ Perm(i)|¬ Perm(i-1)) is substantially greater than P(success(i)|Perm(i-1)), the

right-hand term in (A3) depends almost only on αp, irrespective of the values taken by the

other parameters: intuitively, the main reason for doubting that a test success implies absence of

permanent faults is the possibility that the latter may not become manifest in testing.

Scenario C: The same as scenario B, but the adjudication process may misinterpret the data

collected. This behaviour is modelled by 2 parameters: with probability β1 erroneous data are

interpreted as a success, and with probability β2  correct data are interpreted as a failure. These

parameters model both the possibility of physical faults affecting the adjudication, and of the

adjudication being imperfect by design (e.g., software-implemented “reasonableness tests” on

program results). 

Equations (A4) and (A5) describe Ppost(f,p0) and Ppost(s,p0) for this scenario. If both β1 and

β2 are smaller than θt  and θp, (which is plausible if adjudication errors are due to physical

faults only), these functions will take very similar values to those in Scenario B.
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i-th Observation phase i-th Adjudication phase
state of

component
during

observation

correctness of the data
collected

correctness
of the data
collected

test results

Ok(i) correct(i) correct(i) success(i)
Scen.A Perm(i) erroneous(i) erroneous(i) failure(i)

Temp(i) erroneous(i)
Ok(i) correct(i)

Scen.B Perm(i) erroneous(i)  with prob 1-αp
correct(i)      with prob αp

correct(i) success(i)

Temp(i) erroneous(i)  with prob 1-αt
correct(i)      with prob αt

erroneous(i) failure(i)

Ok(i) correct(i) correct(i) success(i)    with prob 1-β2
failure(i)     with prob β2

Scen.C Perm(i) erroneous(i)  with prob 1-αp
correct(i)      with prob αp

erroneous(i) failure(i)     with prob 1-β1
success(i)    with prob β1

Temp(i) erroneous(i)  with prob 1-αt
correct(i)      with prob αt

Table 4. Hypotheses for the three scenarios

Appendix

Here we list all the formulas needed for applying this diagnosis method, and the expressions of

the intermediate parameters and descriptive measures used in the paper, for the three scenarios

considered. More details are in [9].

Scenario A (α t=αp=β1=β2=0):

P f
p t

p t t t
post

f

f f( , )
( )

( ) ( )
0

1

1 1
= ⋅ −

⋅ − + ⋅ −
θ θ

θ θ θ θ
(A1)

Scenario B (β1=β2=0):

P f p

p t p p
t

p t
t

post

t p p
t

p

f

t p
t

p

( , )

( ( ) ) ( ) ( )
( )

( )( ( ) )
( )

0

0 1 1 1 0 1 1
1

1

1 0 1 1
1

1

=

⋅ − ⋅ − − + − ⋅ ⋅ − ⋅ − ⋅ −
−























− − ⋅ − − ⋅ ⋅ −
−











θ α α θ α θ α
α

θ α α θ α
α

ff

t p p
t

p

f

p t p p
t

+

+ ⋅ − ⋅ − − + − ⋅ ⋅ − ⋅ − ⋅ −
−























0 1 1 1 0 1 1
1

1
( ( ) ) ( ) ( )

( )θ α α θ α θ α
α

(A2)
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P s p

p p t p p
p t

p p t
p t

post

t p p
t

p

s

t p
t

( , )

( ( ) ) ( )
( )

( )( ( ) )
( )

0

0 1 1 1 0
1 1

1

1 0 1 1
1 1

=

⋅ − − ⋅ − − + − ⋅ ⋅ ⋅ − − ⋅ −







 −













− − − ⋅ − − ⋅ − − ⋅ −

θ θ α α θ α θ θ α
α

θ θ α α θ θ α
αα

θ θ α α θ α θ θ α
α

p

s

t p p
t

p

s

p p t p p
p t









 +

⋅ − − ⋅ − − + − ⋅ ⋅ ⋅ − − ⋅ −







 −













0 1 1 1 0
1 1

1( ( ) ) ( )
( )

(A3)

Scenario C:

P f p
p t p t

p t
post

p p t t

p p t
( , )

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ) (
0

0 1 1 1 2 1 1 1 1 1 2

1 0 1 1 1 2 1 1 1 1
=

⋅ − ⋅ − + ⋅ − ⋅ − ⋅ − − − − ⋅ − ⋅( ) +

− − ⋅ − + ⋅ − ⋅ − ⋅ − − −

α β α β θ α β θ θ α β

α β α β θ α β θpp t Q

p p Q

p t p t

t
f

p p
f

p p t t

− ⋅ − ⋅( ) ⋅ +

− ⋅ ⋅ − ⋅ − + ⋅( ) ⋅ −( )
⋅ − ⋅ − + ⋅ − ⋅ − ⋅ − − − − ⋅ − ⋅

θ α β

θ α β α β

α β α β θ α β θ θ α β

( ))

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ))

1 2

1 0 1 1 1 2 1

0 1 1 1 2 1 1 1 1 1 2(( )

− ⋅ ⋅ − ⋅ − + ⋅( ) ⋅ −( )( ) ( ) ( )1 0 1 1 1 2 1p p Qp p
fθ α β α β

(A4)

where Q
t p tt t

p p
=

⋅ − ⋅ − + − − ⋅ − ⋅( )
− ⋅ − + ⋅

θ α β θ θ α β
α β α β

( ) ( ) ( ( ))

( ) ( )

1 1 1 1 1 2

1 1 1 2

P s p
p p t t

p p t t
post

t t p p

t t
( , )

( ( )) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ) (
0

0 1 1 1 2 1 1 1 1 1 2

1 0 1 1 1 2 1 1 1
=

⋅ − − ⋅ − ⋅ − + ⋅ − ⋅ − ⋅ − − − ⋅( ) +

− ⋅ − − ⋅ − ⋅ − + ⋅ − ⋅ − ⋅

θ θ α β θ α β β α β α

θ θ α β θ α β β 11 1 2

1 0 1 1 1 2 1

0 1 1 1 2 1 1 1 1 1 2

− − − ⋅( ) ⋅ +

− ⋅ ⋅ ⋅ − + − ⋅( ) ⋅ −( )
⋅ − − ⋅ − ⋅ − + ⋅ − ⋅ − ⋅ − − − ⋅

α β α

θ β α β α

θ θ α β θ α β β α β α

p p
s

p p
s

t t p

Q

p p Q

p p t t

) ( )

( ) ( ) ( )

( ( )) ( ) ( ) ( ) ( ) pp

p p
sp p Q

( ) +

− ⋅ ⋅ ⋅ − + − ⋅( ) ⋅ −( )( ) ( ) ( )1 0 1 1 1 2 1θ β α β α

 (A5)

where Q
p t tt t

p p
= − − ⋅ − ⋅ − + ⋅ − ⋅

⋅ − + − ⋅
( ( )) ( ) ( )

( ) ( )

1 1 1 2 1 1

1 1 1 2

θ θ α β θ α β
β α β α

 .
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Scenario A a p= logθ ,  b t= logθ , L = 0,  F a bL ( . ) /0 5 ≈

Scenario B

a p= logθ ,  b
t t

p
= ⋅ −

−
log

( )θ α
α

1

1
,   c

t p
p

t
p=

− ⋅ − −






≈log
( )

log
α

θ α θ
α

1 1

L
p

p tp t

p

= − ⋅ − − ⋅ −
−

θ
θ α θ α

α
1 1 1

1
( ) ( )

L
p

F
a

b b b
p L( . )

log
log( )0 5

1 1≈ −
−( )

≈ ⋅ +
α

θ ,             sfrT
b

c
=

Scenario C

a p= logθ  ,   b
t p tt t

p p
= ⋅ − ⋅ − + − − ⋅ − ⋅

− ⋅ − + ⋅
θ α β θ θ α β

α β α β
( ) ( ) ( ( ))

( ) ( )

1 1 1 1 1 2

1 1 1 2

c
p t t

p p

t t
=

⋅ − + − ⋅
− − ⋅ − ⋅ − + ⋅ − ⋅

β α β α
θ θ α β θ α β

1 1 1 2

1 1 1 2 1 1

( ) ( )

( ( )) ( ) ( )

L
p

p t t pt t p p

p p

=
− − ⋅ − + ⋅ − ⋅ + ⋅ −( ) + ⋅ ⋅ − + − ⋅( )

⋅ − + − ⋅
−

θ
θ θ β θ α β α β θ β α β α

β α β α
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2 1 1 1 2 1 1 1 2

1 1 1 2
1

L
p p

F
a

b b b
p L( . )

log ( ) ( )
log( )0 5

1 1 1 2 1≈ −
− ⋅ − + ⋅( )

≈ ⋅ +
α β β α

θ ,     sfrT
b

c
=

Table 5. Expressions for the intermediate parameters and descriptive measures


