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Abstract
An important practical problem in fault diagnosis is dis-
criminating between permanent faults and transient faults.
In many computer systems, the majority of errors are due
to transient faults. Many heuristic methods have been used
for discriminating between transient and permanent faults;
however, we have found no previous work stating this de-
cision problem in clear probabilistic terms. We present an
optimal procedure for discriminating between transients
and permanent faults, based on applying Bayesian inference
to the observed events (correct and erroneous results). We
describe how the assessed probability that a module is
permanently faulty must vary with observed symptoms.
We describe and demonstrate our proposed method on a
simple application problem, building the appropriate equa-
tions and showing numerical examples. The method can be
implemented as a run-time diagnosis algorithm at little
computational cost; it can also be used to evaluate any
heuristic diagnostic procedure by comparison.

1. Introduction

Fault diagnosis is an important function in computer
systems, both for manual repair and for automatic recon-
figuration in fault-tolerant systems. A fault may cause the
system to violate its requirements, i.e., to fail. Even if the
errors caused by a given fault are masked by redundancy, it
is desirable to eliminate the fault. Otherwise, additional
faults, accumulating over time, may eventually exceed the
fault-masking capabilities of the system and cause system
failure. Some form of repair or reconfiguration ability is
thus generally necessary, except possibly in fault-masking
designs for very short mission times.

For the purpose of reconfiguration or repair, a system is
subdivided into modules. Those modules that are seen to
be faulty are excluded from participating in system opera-
tion, as a minimum; in addition, they may be manually
repaired, replaced with on-line spares, or their functions
may be reallocated to spare modules already present in the
system. This action depends on a correct diagnosis. Many
algorithms exist for automatic diagnosis.

The purpose of diagnosis is often limited to identifying
the hardware module(s) affected by faults. However, to

choose the right fault treatment action it is also necessary
to discriminate between permanent and transient faults.
With transient faults, modules momentarily become prone
to behaving erroneously, though they do not suffer any
permanent damage. The natural way of dealing with a tran-
sient fault is to keep using the affected module, after re-
covering any data error caused by the transient fault. In
many computer systems, transient faults are known to be
the great majority of causes of errors (see, for instance,
[11]. Published measures of the ratio between the frequen-
cies of transient and permanent faults vary from 4 to
1000). However, discriminating between transient and
permanent faults is difficult. This is the topic of this pa-
per. We will use the term "diagnosis" to designate this
specific problem: deciding whether a given module is af-
fected by a permanent fault, a transient fault or no fault.

Discriminating between permanent and transient faults
is an important practical problem. In industries like civil
aviation and telecommunications, where operating with
permanently faulty modules would carry high risks or
costs, it is common for modules to be replaced as faulty
but later prove to be free from permanent faults, when
tested in the repair shop. Treating transient faults as per-
manent thus has a high cost for these industries. In a sys-
tem designed for long maintenance-free missions (e.g., a
spacecraft), misjudging a module as permanently faulty
may cause premature exhaustion of the available stock of
spares. On the other hand, continuing to use a permanently
faulty module may cause premature failure of the whole
system, despite the availability of spares for continued
fault-tolerant operation.

Diagnosis is based on the observation of erroneous be-
haviour. A general description of diagnosis is as follows.
A module (which, depending on the specific design, may
be as small as a subset of a chip or as large as a whole
computer or more) is monitored, either by observing side-
effects of its intended computations (typically, signals
from error-detection mechanisms) or by applying test pro-
cedures every now and then and observing the module's re-
sponse. Some of the observed behaviours can be diagnosed
as erroneous, in the sense that they would not happen un-
less there is a fault in the system. But a module may be-
have erroneously for different reasons: a permanent fault, a
transient fault or propagation of errors from another mod-
ule. Decisions about fault treatment should be quite differ-
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ent in the three cases, yet the symptom alone (the erro-
neous behaviour) is insufficient for deciding among them.

Compared to “ordinary” reliability modelling, reasoning
about diagnosis is somewhat counter-intuitive. Reliability
modelling predicts the probabilities of certain sequences of
events given some assumptions. The modeller plays the
role of an omniscient observer. Instead, a diagnostic proce-
dure takes these assumptions, this set of sequences and
their probabilities as inputs, but cannot depend on know-
ing the real sequence under way, and involves questions
like "If I observe certain symptoms, which are consistent
with more than one of the possible sequences, which se-
quence is really taking place?".

Designers have used many heuristics for discriminating
between transient and permanent faults, spanning from
simple retry to rather sophisticated off-line error log audit
and trend analysis [4, 6]. Heuristics are suggested by intu-
itive reasoning, and then validated by experiment or mod-
elling (see e.g. [1] for an assessment of a heuristic via
modelling). Most on-line techniques [1, 5, 8, 12, 13] use
thresholding schemes. They count errors, and when the
count crosses a pre-set threshold a permanent fault is as-
sumed.

In contrast to the wide application of heuristics, we
have found no previous work stating this decision problem
in clear probabilistic terms. Interestingly, a rigorous math-
ematical formulation of diagnosis is well known. It is
based on Bayesian inference [2, 7]. We apply it to discrim-
inating between permanent and transient faults. We refer to
an on-line application of the procedure: after each observa-
tion (of either erroneous or correct behaviour), our diagno-
sis procedure runs, instead of a heuristic procedure. It pro-
duces an updated probability of the module being affected
by a permanent fault. This is an optimal diagnosis algo-
rithm, in the sense that rational fault treatment decisions
based on its results would yield the best utility among all
alternative decision algorithms using the same informa-
tion. A rational decision uses the probability of permanent
fault to weigh the consequences that any action (e.g., sub-
stituting the module) would have if the module were actu-
ally permanently faulty vs the consequences if it were not
permanently faulty. Indeed, this explicit separation of di-
agnosis from the subsequent decision is one of the impor-
tant advantages we seek over the heuristic algorithms,
which usually deliver directly a choice of action (or, equiv-
alently, a Boolean decision on considering the module as
faulty or not). Diagnosis (the assessed probability of the
module being permanently faulty) is affected by certain fac-
tors; the utility or loss from an action depend on the state
of the module (estimated by diagnosis) but also on other
factors (e.g., the mission phase or the amount of spares
still available). Hence the desirability of treating the two
problems separately.

Bayesian inference gives a standard procedure for an ob-
server who needs to update the probability of a conjecture
on the basis of new observations. What is needed is a prior
probability of the conjecture being true before one takes
into account the results of the observations. For medical

diagnosis, for instance, this probability is typically given
by the prevalence of the disease in the population of inter-
est. For hardware diagnosis, this probability is available
from the reliability models that designers routinely use,
combined with the results of all previous observations.

This approach to diagnosis is applicable in all the cir-
cumstances where heuristic methods have been applied. It
uses the same information that is used to design and vali-
date them, except that it uses it in a provably correct way
according to the axioms of probability. We expect from
the Bayesian approach the usual advantages of an exact al-
gorithm over heuristic algorithms. A heuristic algorithm
is suitable for a class of applications that must be deter-
mined empirically; instead, an algorithm that is provably
correct by construction can be trusted to give exact results
within a pre-defined scope of application. The Bayesian
approach gives a general construction method for diagnosis
algorithms for any system. We describe its application in a
simple case: diagnosis of a single module with exponential
reliability.

We give in Section 2 a summary introduction to
Bayesian inference, a formalisation of our diagnosis prob-
lem, the assumptions we make for our example applica-
tion and the general form that the diagnosis method takes.
Section 3 outlines the behaviour of the algorithm, i.e.,
how the diagnosis changes as a function of the observed
failures, or lack thereof. Section 4 illustrates the behaviour
of our diagnosis method and the effects of system parame-
ters via numerical examples. Section 5 discusses our re-
sults.

2. Bayesian diagnosis

2.1 Bayesian Inference

Suppose we have a conjecture x, about which we are
uncertain. Our degree of belief in the conjecture being true
is described by a probability P(x). After observing some
new, relevant evidence we want to update our belief in x in
a rational way. Both the evidence and the conjecture are de-
scribed as events, that is, subsets of the set of all possible
outcomes of some experiment. Using the definition of
conditional probability, one can write that in general:

P(x|evidence) P(evidence) =P(evidence|x) P(x).
Interpreting the left-most probability in this equation as

the posterior probability of conjecture x (degree of belief in
x after observing the new evidence), and the right-most
probability as its prior probability (degree of belief in x
before observing the new evidence), we obtain:

Ppost(x|evidence)=
P x P evidence x

P evidence

prior ( )  ( | )

( )
(1)

Given a set C of mutually exclusive conjectures such
that their union has probability 1, we can rewrite the right
member of the equation and obtain:
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Ppost(x|evidence)=
P x P evidence x

P Conj P evidence Conj
prior

prior
Conj C

( )  ( | )

 ( ) ( | )
∈

∑

Table 1 lists the events of interest (conjectures and evi-
dence that may be observed) in our context, together with
the notation adopted to indicate them, while Table 2 lists
the abbreviations used.

correct(i) the data collected during observationi are
correct

erroneous(i) the data collected during observationi  are
erroneous

success(i) phase adjudicationi did not detect any error in
the data observed

failure(i) phase adjudicationi detected an error in the
data observed

Ok(i) the module was fault-free during observationi

Perm(i) the module was permanently faulty during
[part of] observationi

Perm the module is permanently faulty (at a time
specified by the context of use)

Trans(i) the module was not permanently faulty, and
suffered from a transient fault or its after-
effects (erroneous state), during [part of]
observationi

¬ x complementary event of event x

Table 1. Definitions of the basic events and
symbols used to indicate them

FL(0.5) number of consecutive failures needed  for
Ppost(Perm)  to increase from L to 0.5.

L the limit of P(Perm)  after a number of
consecutive successes tending to infinity

P(A) probability of event A
P(A|B) probability of event A conditional on event

B
Tsfr "success/failure ratio threshold" (cf  Sect. 3)
αp probability of a permanently faulty module

producing correct data when tested
α t probability of a module with transient faults

(but no permanent fault) producing correct
data when tested

β1 probability  of a module's erroneous
response under test being adjudged as correct

β2 probability  of a module's correct response
under test being adjudged as  erroneous

θp probability of a permanent fault occurring
between two test rounds

θt probability of a transient fault occurring
between two test rounds

λp, λ t hazard rates for permanent and for transient
faults, respectively

Table 2. Abbreviations used in the analysis

2.2 Test process phases

Let us focus on one module, whose behaviour the de-
signers have decided to monitor. We can model this moni-
toring as repeated rounds of testing of the module. One
round is shown in Figure 1. There are two phases. First,
in an observation  phase, a set of data produced by the
module is gathered. Then, in an adjudication phase, these
data are analysed to decide whether they are erroneous or
correct. This phase produces the test result: success if no
error has been detected in the data, failure otherwise. We
shall denote observationi and adjudicationi the observation
and adjudication phase of the i-th test round, respectively.
Some examples from current design practice are:
1) modular redundant, voted architectures: the observation

phase is the execution of a task up to the production of
results to be voted, which are what is observed. The ad-
judication phase is the voting, which selects a result
for output and  indicates whether the module produced a
minority result in the vote;

2) architectures using program code signatures for low-
level error detection (cf, for instance, [11]): the observa-
tion phase is the period over which a signature is com-
puted, and the adjudication is its comparison with the
pre-computed, correct signature;

3) architectures not intended to be fault-tolerant but hav-
ing some error-detection feature, like memory parity:
observations are the operations that may trigger the
mechanism, like individual memory accesses, and adju-
dication is trivial, limited to interpreting a parity error
as "failure". This information is seldom used for diag-
nosis, but it could be by running a diagnosis procedure
after each error signal;

4) architectures where modules are periodically taken off-
line and tested: the observation is the execution of test
programs; the adjudication is the analysis of their re-
sults.

We note that the model covers a wide spectrum of situa-
tions, and at this stage one can already expect wide ranges
for parameter values: the period between test rounds may
vary between fractions of microsecond (case 3 above), to
milliseconds (case 1) and even months (case 4); the proba-
bility that tests of a faulty module will not return "failure"
also varies by orders of magnitude, being close to 0 in
thorough off-line tests but close to 1 in case 3, as most
faults will not affect a specific memory access.

2.3 Definitions and assumptions for the examples
studied

In terms of Bayesian inference, the result of the test ac-
tivity is interpreted as the “evidence” in expression (1). At
the i-th test round, the set C of possible conjectures has
only three elements: Perm(i), Trans(i) and Ok(i). The prior
probabilities of the conjectures depend on how we model
the failure process of the module. We consider the simplest
case, that of a module with exponential reliability
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(Poisson arrival processes) for both transient and perma-
nent faults. If the test rounds are periodic, the probabilities
of the module becoming faulty - with a permanent or a
transient fault - in the interval between the ends of two ob-
servation phases are two constants, which we call θp and
θt, respectively. Then, the prior probability of any conjec-
ture at round i can be obtained from the three probabilities
at round i-1, corrected with the probabilities of faults oc-
curring in the meantime. We also consider the module to
be isolated: there is no propagation of errors from other
modules.

For our example we use an additional assumption:
while a permanent fault lasts forever, a transient fault (or
its after-effects) does not generally continue beyond the be-
ginning of a new observation phase, implying: 
P(erroneous(i) |Trans(i-1))=P(erroneous(i) |Ok(i-1)) ;

This assumption simplifies some of our equations: if
the effects of a transient fault are observed, they are much
more likely to be due to a ‘recent’ transient fault than to an
‘old’ one. This is realistic if the duration of transient faults
is usually small compared to the time distance between
two test rounds, and the effects of transient faults are re-
covered before the next test round. There are many cases in
which this assumption is realistic: with off-line testing,
modules are reset before testing; with memory parity,
words can be overwritten with correct data before the next
test. In many other cases, the assumption will be more or
less unrealistic, requiring a more complete model.

From these assumptions and definitions, the following
relations follow:

P(Perm(i+1) |Perm(i))=1

P(Perm(i+1) |Ok(i))= P(Perm(i+1) |Trans(i))=  θp

P(Ok(i+1) |Perm(i))=0

P(Ok(i+1) |Ok(i))= P(Ok(i+1) |Trans(i))=1-θt-θp

P(Trans(i+1) |Perm(i))=0

P(Trans(i+1) |Ok(i))= P(Trans(i+1) |Trans(i))=  θt

Another set of conditional probabilities is needed:

P(evidence(i) | Conjecture(i) )

where evidence is one of {success, failure}. This is a set
of six parameters, which essentially describe coverage fac-
tors in:
a) the fault manifestation process, i.e., the way a given

fault causes the affected module to produce erroneous
-or correct - data during observation phases, and

b) the ability of the adjudication process to discriminate
correctly between erroneous and correct data.

We will later model more details of these processes, but
first we describe the diagnosis algorithm and give a general
idea of how the diagnosis changes with new test results.

2.4 Definition of the method for optimal diagnosis

Using the definitions given, expression (1) for the i-th
test round can be written as:

Ppost(Conjecture(i))=

P Conjecture i P evidence i Conjecture i

P Conj i P evidence i Conj i
prior

prior
Conj i C

( ( )) ( ( ) | ( ))

 ( ( )) ( ( ) | ( ))
( )∈
∑

(2)

where Conjecture(i)∈ C={Ok(i), Perm(i), Trans(i)}, and
evidence(i)∈ {success(i), failure(i)}

The posterior probabilities Ppost  obtained by applying
equation (2) at round i-1 are then used to derive the prior
probabilities to be used in applying (2) to the results of
the next round i:

Pprior(Conjecture(i))=
P Conj i P Conjecture i Conj ipost

Conj i C
( ( )) ( ( ) | ( ))

( )
− −

− ∈
∑ 1 1

1

where C={Ok(i-1), Perm(i-1), Trans(i-1)}, and the condi-
tional probabilities are as listed in section 2.3. The diag-
nosis is thus kept up-to-date by repetitively applying equa-
tion (2) after each round of testing. At the first round, with
i=1, (typically, at the beginning of a mission), however,
we need to assign prior probabilities Pprior(Conjecture(1))
to the three conjectures, Ok(1), Perm(1), Trans(1). For
convenience we define a set of probabilities
P p o s t ( C o n j e c t u r e ( 0 ) )  to be used to derive
Pprior(Conjecture(1))  at the first round of testing. These
probabilities must be chosen to represent the risk that the
module is already faulty at this stage. However, we will
see that their influence on the diagnosis becomes negligi-
ble as new observations accumulate, as is intuitively clear
it should do.

This concludes the specification of the diagnosis algo-
rithm. It can be seen that it is computationally cheap.
However, this specification does not give a feel for how
the algorithm will behave. We know that it infers the cor-
rect diagnosis from the test results, in the sense that the
diagnosis is consistent with the reliability model from
which the detailed algorithm was derived. However, given
a specific sequence of observed successes and failures, we
would not intuitively know what this diagnosis will be.
We will now outline some of the interesting properties of
this evolution, and then in Section 4 we will graphically
illustrate this behaviour on numerical examples, given
specific sequences of test results.

3 Behaviour of the proposed method

Here, we outline how the diagnosis evolves with new
evidence, i.e., how the posterior probability of the conjec-
ture “the module is permanently faulty” changes with ac-
cumulating test results. A more complete study, which
cannot be presented here for lack of space, can be found in
[9, 10].

One may first ask what will be the consequences of ob-
serving a long series of successes. In this case, the proba-
bility of permanent fault asymptotically tends to a limit-
ing value L. Usually, L >0: there is a non-zero probability
of the module being permanently faulty, even though it
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has never failed a test (yet). This may appear counterintu-
itive, but it can be seen that it is correct, for various rea-
sons: 1) a module that has passed many tests may have
become faulty recently, so only the last few tests in the se-
ries would have had a chance of detecting the fault; and
2) some faults may be completely undetectable by the
tests used, and this would be modelled in the parameter
P(success(i) | Perm(i)). Of course, if there were a perma-
nent fault, a very long series of successes would be un-
likely; but if this long series happened, it would not allow
one to completely rule out a permanent fault.

If instead an uninterrupted series of failures is observed,
Ppost(Perm) increases with and tends to 1 as the number of
failures approaches infinity.

All mixed series of failures and successes will cause in-
termediate behaviours, possibly with oscillations of the
value of Ppost(Perm). The detailed evolution of the diagno-
sis for any given history of successes and failures can ob-
viously be obtained by repeatedly applying equation (2).
However, to understand the influence of the parameters,
some less detailed description is desirable. We have defined
two such measures, which describe important macroscopic
aspects of how Ppost(Perm) changes with test results, and
will be useful in the rest of the paper ([10] gives closed
form expressions for these measures):
- a measure of how quickly the diagnosis changes in re-

sponse to a first failure. In the operation of a system,
long series of successes will usually separate any fail-
ures or clusters of failures. So, a common case is that a
failure is observed at a test round i when Pprior(Perm(i))
≈L. A useful descriptive measure is thus FL(0.5), the
number of consecutive failures to be observed for
Ppost(Perm) to increase from L  to 0.5. Of course,
FL(0.5) is usually a non-integer. Since test rounds hap-
pen in integer numbers, the diagnosis can only be up-
dated after an integer number of observations, and any
decision based on it will be somewhat insensitive to
small errors in parameter values.

- a measure of how frequently failures must occur for
Ppost(Perm) eventually to tend to 1. When successes and
failures alternate (not necessarily in a regular pattern),
causing Ppost(Perm) to oscillate, we would like to know
by how much failures must outnumber successes for
our diagnosis to veer decidedly towards “permanently
faulty”. It turns out that this can be determined by
reference to a threshold value of the ratio between the
numbers of successes and failures, which we call the
success/failure ratio threshold, or Tsfr. If the ratio
between the numbers of observed successes and failures
asymptotically exceeds Tsfr, Ppost(Perm) decreases
towards a value close to L ; with a lower ratio, it
increases towards 1.

4. Numerical applications

We now take our example of a one-module diagnosis
algorithm and instantiate it with parameter values describ-

ing two different contexts of application. For each context,
we show how the diagnosis would evolve during a specific
sequence of test results. We also show how the descriptive
measures defined in section 3 capture the macroscopic evo-
lution of the diagnosis over time.

Note that the graphs shown in Figures 2 to 8, like
those in previous figures, are not predictions of faults and
failures, as normally produced in reliability modelling.
They describe instead the diagnosis: what one can infer
about the underlying, invisible fault process, given a spe-
cific visible sequence of test results.

Figures 2-8 are intended to be read as "animations" of
the test and diagnosis sequence, as follows. Movement to-
wards the right on the x axis represents the flow of time
(more precisely, the number of test rounds). Test failures
are marked with an arrow. Each number on the x axis
(under a test failure) is the number of successes observed
since the last failure, as this is a more interesting indica-
tion than the number of rounds from the (arbitrary) origin
of the time axis. The columns represent the evolution of
the diagnosis Ppost(Perm) with each successive test result.
At the beginning of the sequence, P(Perm)=L.

But first, we consider the derivation of the parameters
for our algorithm.

4.1 Parameters of the diagnosis algorithm -
different scenarios

We have specified the diagnosis algorithm in terms of
parameters which are conditional probabilities. First, there
is the conditional probability of a permanent (resp. tran-
sient) fault affecting the module over a certain period of
time. Having assumed exponential reliability, this is
known given a hazard or arrival rate for the given category
of faults and the time duration of interest.

There are then the conditional probabilities of observ-
able test results (success or failure), conditional on the true
state of the module. These are determined, in detail, by
several factors. We will illustrate their roles via three dif-
ferent, increasingly general scenarios. The evolution of the
diagnosis in the three scenarios is studied analytically in
[9, 10].

Scenario A (‘perfect faults, perfect adjudication’): All
faults in a module cause it to fail all tests. So, a test suc-
cess implies certainty that the module is non-faulty.
Clearly, L = 0. The only non-obvious problem in diagno-
sis is discriminating between transient and permanent
faults, after test failures are observed.

Scenario B (‘real faults, perfect adjudication’): Even
when faulty, a module may still produce correct test data,
with probabilities αp if there are permanent faults and αt
in case of transient faults only. The parameters αp and αt
describe both the fault manifestation characteristics of the
module (e.g., rate of intermittent manifestation of perma-
nent faults) and the coverage of the tests.  The adjudication
is still 'perfect' (error-free). Observing a success does not
warrant certainty that the module is non-faulty. Thus, dif-
ferently from Scenario A, the limit L is greater than 0.
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Scenario C (a realistic scenario) differs from Scenario
B in that the adjudication process may misinterpret the data
collected, due either to physical faults affecting the adjudi-
cation, or to the adjudication being imperfect by design
(e.g., software-implemented “reasonableness tests” on pro-
gram results). This is modelled by 2 parameters: with
probability β1 erroneous data are interpreted as a success,
and with probability β2 correct data are interpreted as a
failure.

In summary, the simplified Scenario A (‘perfect faults,
perfect adjudication’) is modelled by setting
αp =αt =β1 =β2 =0. For Scenario B (‘real faults, perfect
adjudication’), αp ≠0  and/or αt  ≠0, but β1 =β2 =0

4.2 Example 1: frequent checks on results of
application tasks

The module to be diagnosed is a processor or computer,
executing a cyclic task at a repetition rate of 20 times per
second. The ‘Observation’ phase is the entire task and the
observed data are the execution results, the ‘Adjudication’
phase takes a negligible time. The processor failure rate for
permanent failures is λp = 1.2 / 105 hours. θp is obtained
by multiplying λ p  by the task duration, thus
θp=λp/(20*3600) = 1.7 10-10. We assume that transient
faults are 10 times more frequent than permanent faults,
i.e., θt=10*θp=1.7 10-9. Then,
- for Scenario A, αp=αt=β1=β2=0;
- for Scenario B, we assume αp=0.3, α t=0.7, β1=

β2=0 ;
- for Scenario C, we keep αp=0.3, α t=0.7, and, as-

suming a small but non-zero probability of adjudica-
tion error due to physical faults, β1= β2= 10-9.

Figure 2 compares Scenario A with Scenario B. In
Scenario A, one success is sufficient to make
Ppost(Perm)=0 : the memory of previous failures is lost.
The plot for Scenario C in Figure 3 is quite different from
that for Scenario B in Figure 2, because it assumes β1 and
β2 greater than θp: A test failure is more likely due to ad-
judication error rather than to an actual fault.

Suppose next, remaining in Scenario C, that transient
faults are 100 times more frequent than permanent faults
(instead of 10 times). The resulting plot is in Figure 4. An
isolated failure now increases Ppost(Perm) by much less
than before: the failure is more likely to have been caused
by a transient fault. With reference to Figure 4, it may be
useful to point out the information given by the measures
FL(0.5) and Tsfr. The first isolated failure in the series of
tests increase Ppost(Perm) less than in Figure 3, as FL(0.5)
is greater. Tsfr describes how soon the failures start being
‘forgotten’. In Figure 4, Tsfr=15.43, and in the sequence of
tests there are at least 16 successes for each preceding fail-
ure: one can see that there is no consistent upward trend in
the values that Ppost(Perm) takes after each failure. The
reader may compare this with the corresponding trends in
the preceding figures.

Figure 5 assumes the same parameter values as in
Figure 3, except that the adjudication is just a software-
implemented reasonableness check on program results, for
which we assume low coverage, so that
β1=P(success(i)|erroneous(i))=0.5. In this case, the second
failure (labelled “42”) has different effects from those of the
first failure (labelled “1”); in Figure 3, the effects of the
two were similar. While 42 successes were sufficient to
‘reset’ Ppost(Perm) to a value close to L in Figure 3, they
are not sufficient in Figure 7, as shown by the fact that
Tsfr=45.

Returning to the information given by FL(0.5), we ob-
serve that among all these choices of parameters, Scenario
B in Figure 2 has the lowest value of FL(0.5). Thus,
Ppost(Perm) after the first failure is highest in Figure 2.
FL(0.5) in the case of Figure 3 is quite close to the case of
Figure 5: after the first failure the value of Ppost(Perm) is
similar for the two cases. Last, one may notice that in all
cases FL(0.5) <2, and two consecutive failures make
Ppost(Perm) very close to 1.

4.3 Example 2: Off-line, periodic testing

Suppose now that, for the same processor as in the pre-
vious example, the designer decides to run, instead of error
detection concurrent with task execution, a reasonably
thorough off-line self-testing program, for one minute in
each hour. We thus have θp=1*λp=1.2 10-5. We assume
Scenario C. Given the more thorough test procedure,
P(correct(i)|Perm(i)) is set to a smaller value than in
Example 1: αp=0.1. αt=0.7 as before. In Figures 6, 7 and
8, transient faults are assumed to be 10, 100 and 1000
times more frequent than permanent faults, respectively,
i.e. λ t = 1.2 10-4, 1.2 10-3, 1.2 10-2. θt (equal to λ t/60 :
only those transient faults that occur during the minute of
off-line testing affect test results) thus takes the values:
2 10-6, 2 10-5 and 2 10-4. Since the test lasts longer than
in example 1, we assume higher probabilities of physical
faults affecting the adjudication phase: β1=β2=10-6 in
Figures 6 and 7; in Figure 8, instead, the probability β1 of
adjudication error in case of erroneous data is set to 0.2.

For Figures 6 and 7, FL(0.5)<1, thus a single failure is
sufficient for Ppost(Perm) to become greater than 0.5. The
two plots are rather similar in pattern, but Ppost(Perm) in
Figure 7 is always lower than in Figure 6, as the probabil-
ity that a test failure is due to a transient rather than a
permanent fault is higher. Indeed, FL (0.5) is lower for
Figure 6.

In Figure 8, transient faults are more likely than in the
previous cases, so Ppost(Perm) increases less after each iso-
lated failure. On the other hand, Tsfr is larger, as a conse-
quence of the higher probability of ‘false negatives’ in ad-
judication, so more successes are necessary to keep
Ppost(Perm) low. With the sequence of events we have
considered, with rather frequent failures, Ppost(Perm) thus
becomes larger than in Figures 6 and 7.
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5. Conclusions

We have described an optimal method for discriminating
between transient and permanent faults. This is an impor-
tant practical problem in fault diagnosis, since in many
computer systems the majority of errors are due to tran-
sient faults. The numerical examples illustrate how the
method consistently takes account of intuitively important
factors like test coverage and the rates of occurrence of
faults. The analytical study explains some aspects of the
relationship between the behaviour of the diagnosis algo-
rithm and the reliability model from which it is built.

This Bayesian diagnosis procedure differs from the
heuristic methods that are widely used by practitioners in
that it separates the phase of computing the probabilities
of the possible states of a module from that of deciding a
fault treatment action on their basis. Given the diagnosis,
i.e., the probability of a permanent fault being present, an
optimal fault treatment decision depends on the distribu-
tion of the utility (or loss) that will ensue from any com-
bination between a true state and a chosen action: continu-
ing operation with a permanently faulty module, discarding
a healthy module, etc.. A common decision criterion
(appropriate when the concern is the aggregate utility from
many similar systems) is for instance to minimise the ex-
pected loss. Calling “Keep” and “Discard” the two possible
decisions about a module, and E(decision) the expected loss
from a given decision, given a certain true state of the
module, the decision algorithm would simply choose to
discard a module iff:

E(Keep | Perm) P(Perm) + E(Keep | ¬Perm) (1-P(Perm)) >
E(Discard | Perm) P(Perm) + E(Discard | ¬Perm) (1-P(Perm))

We outlined in the Introduction the other advantages to
be expected from applying an exact algorithm, provably
correct by construction, in comparison to a heuristic pro-
cedure. The amount of improvement that can be achieved
depends on the specific application context. However, if
the costs of the two approaches were comparable, it would
seem natural to choose the exact approach. It is clear from
our description that the Bayesian algorithm has limited
run-time cost: it amounts to applying equation (2) to up-
date the diagnosis after each new observation, or less fre-
quently, e.g. after each test failure or at preset intervals.
Some system parameters need to be estimated to program
the algorithm. These are the same parameters that a de-
signer would need to estimate in any case in order to model
the consequences of adopting any heuristic decision
method. As an alternative to using our method directly, a
designer could decide to compare the results of a heuristic
decision method against the optimal one. As a minimum,
the descriptive measures defined here give an idea of the
general trends that diagnosis should follow. They can thus
be used to check whether a heuristic procedure that is intu-
itively appealing will behave correctly on some important
reference sequences. They can also be used directly as
rough run-time decision rules if more refinement is unnec-

essary, for instance to set a threshold on the acceptable fre-
quency of failures before a module is treated as perma-
nently faulty.

We have tried to underscore the fact that the Bayesian
approach is completely general. Its generality and portabil-
ity are possibly its main advantages. Given a heuristic al-
gorithm that has been empirically demonstrated to be satis-
factory in a given range of circumstances, a designer can-
not know whether a similar algorithm will perform well in
other circumstances, or even, given these different circum-
stances, whether any simple, satisfactory heuristic can be
found for them. Even a change in parameter values (e.g.,
mission duration or module failure rates) rather than sys-
tem structure may move the heuristic outside the envelope
for which it has been validated. By contrast, a Bayesian al-
gorithm for a new system type is constructed (or its pa-
rameters are changed as needed) by applying a standard, di-
rect method.

For reasons of space and simplicity of exposition, we
demonstrated the Bayesian approach on the simple example
of a single, isolated module. This example may appear
contrived to those readers who are familiar with elaborate
fault-tolerant design and reliability analyses, yet it is rele-
vant to some everyday problems, like maintenance of
stand-alone computers with limited on-line error detection
and periodical off-line testing. Designers with a more de-
tailed knowledge (i.e., model) of the behaviour of their
systems can accordingly refine the expressions of both the
probability of a fault occurring between two test rounds
and the probability of detection, false positives, etc.
Computing the diagnosis will be more expensive, but it is
unlikely to be prohibitively so. For single-module sys-
tems, useful refinements to our example can be, depending
on the specific circumstances, modelling the distribution,
duration and effects of transient faults in more detail, con-
sidering the probability of successful recovery, and mod-
elling multiple categories of faults, with different arrival
processes and effects.

Among multi-module applications, which we think
have immediate interest, there are:
- multiple-redundant, voted systems: the diagnosis algo-

rithm would use the results of adjudication (voting) to
diagnose each parallel computation channel, and the di-
agnosis can be fed back to the voter as explained in [3];

- extending the reliability model that computes the prior
probabilities to include error propagation. In a multiple-
module system, the diagnosis can be extended to a
choice among the possible combinations of states
(presence of transient or permanent faults) of all mod-
ules, thus taking advantage of all the information avail-
able to the designer; or it can focus on the individual
module of direct interest, representing the influence of
the rest of the system simply as a probability of propa-
gated errors.
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Figure 2. Example 1: different evolution of Ppost(Perm) for Scenarios A and B,
with θt=10*θp.
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Figure 8. Ppost(Perm) (as in Figure 6, but with θt=2 10-4, β1=0.2 )


