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Abstract
Inference from statistical testing is the only sound method available for estimating software
reliability. However, if one ignores evidence other than testing (e.g., evidence from the track
record of a developer, or from the quality of the development process), the results are going to
be so conservative that they are often felt to be useless for decision-making. Bayesian
inference is the main mathematical tool for taking into account such knowledge. Evidence
from sources other than testing is modelled as prior  probabilities (for values of the failure
rate of the program) and is updated on the basis of test results to produce posterior
probabilities. We explain these methods and demonstrate their use on simple examples. The
measure of interest is the probability that a program satisfies a given reliability requirement,
given that it has passed a certain number of tests. The procedures of Bayesian inference
explicitly show the weights of prior assumptions vs. test results in determining this
probability. We also demonstrate how one can model different assumptions about the fault-
revealing efficacy of testing. We believe that these methods are a powerful aid for improving
the quality of decision-making in matters related to software reliability.

1. Introduction
With the ever-increasing reliance on computers, reliability requirements on their behaviour
become more stringent.  For software, this requires not only improving the development
process so as to achieve higher levels of reliability, but also being able to demonstrate, before
delivery, that the required reliability has in fact been achieved.

The obvious language for discussing software reliability is that of probabilities: although
software failures are deterministic, in the sense that they are not caused by random physical
failures, there is uncertainty about whether faults (bugs, defects) are present and when they
will cause failures. So, we are interested in predictions in a quantitative form, expressed as the
probability of observing, or not observing, failures over given periods of future operation. The
only well-developed and trustworthy approach to obtaining a quantitative prediction of
software reliability is via statistical testing. The software is executed in a test environment
reproducing (as closely as possible) operational usage [1, 2, 3], and then from the observed
failures (or lack thereof) one can estimate a probability of the software failing over a stated
period of operation.

The purpose of this paper is to demonstrate the use of Bayesian  probabilistic techniques for
predicting reliability measures from the results observed in testing. In the Bayesian
interpretation, a probability is seen as describing the strength of the belief which an observer
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can justifiably hold that a certain event will take place (subjective probability). The subject,
upon observing the outcome of an "experiment" (i.e., collecting new data), updates the belief
held before the experiment ("prior probability"), producing a "posterior probability". In our
case, the experiment consists in testing the software, and the prior probabilities (prior belief,
prior knowledge) must describe what expectations one may have about the reliability of the
software before testing it.  The need to assume prior beliefs is the main reason why Bayesian
analysis is often opposed in favour of the alternative "classical" approach to statistical
inference. The "classical" methods produce "confidence levels" on stated hypotheses, i.e.,
statements like "I have confidence C that the software has failure rate lower than q".
However, we argue that in our case of interest, i.e., the assessment of software reliability, this
may be misleading. Considering the knowledge one can have about a program before testing
is not only useful, but also necessary. This may be demonstrated by a hypothetical case: let us
imagine that we are assessing the reliability of two programs, one written by notorious
incompetents and one by the best company in the market. After any (even very small) number
of successful tests, the confidence levels for a given hypothesis on the reliability of the two
programs would be equal: they would certainly not measure one's rationally based trust in the
two programs.

We certainly do not claim that Bayesian methods can solve all problems in software
reliability assessment. Many such problems are due to the inadequacy of the available factual
knowledge to support a desired conclusion. For instance, observing a short period of
successful operation does not allow one to predict high reliability over a much longer period
[4]; the apparent soundness of a software engineering method does not allow us to conclude
that it will deliver high reliability, unless we actually measure a consistent, high reliability in
its products [5]. What we do expect from Bayesian methods is an aid in obtaining sensible
conclusions from available evidence (test results), and in testing how these conclusions
depend on additional assumptions (represented in the prior probabilities) on the
characteristics of a software product. They are an aid for decision makers in spelling out what
they really know and believe about a piece of software, and making sure that their decisions
do not depend on intuitive assumptions that remain implicit and thus not subjected to any
conscious analysis.

Bayesian methods are well established in many fields, including reliability assessment, and
have been applied specifically to software reliability assessment [6, 7, 8, 9, 10]. However,
their practical use is hindered by computational difficulties, and thus, for instance, the
selection of prior probability distributions is often restricted by concerns of analytical
tractability. Our goal here is to show how Bayesian inference can be used to represent
different scenarios of practical interest, and to derive the relevant probabilities for decision-
making. We avoid the problem of mathematical complexity by using numerical, rather than
analytical,  computations, and concentrate on presenting alternative hypotheses on the
software to be assessed and deriving their consequences

Our examples in this paper concern an assessment scenario which is typical of safety-critical
software: acceptance testing starts after the last change to the program and reveals no failure.
Otherwise, the software would have to be fixed and the testing session would be restarted
from scratch. This scenario lends itself especially well to our illustrative purposes; however,
applying the same methods to cases in which testing does reveal failures is straightforward.

In the next Section, we describe the standard application of Bayesian inference [7] to the
results of statistical testing. Sections 3 and 4 show how different measures can be derived and
discuss their interest for a decision maker. Section 5 illustrates the implications of different
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assumptions about a program under test, represented by different prior distributions of its
failure rate. Section 6 briefly shows how the basic model presented in section 2 can be
extended to represent other situations of practical interest. Section 7 summarises the limits
and advantages of this approach, and the possible extensions to our work.

2. Application of Bayesian inference to statistical testing
Under a given input profile (that is, given probabilities for all the possible input values), a
program has a certain probability of failure per execution, or, as it is usually called, although
somewhat improperly, a given failure rate . We can then describe our uncertainty about the
program's true failure rate by considering it as a random variable, Θ. The next step is

postulating a probability distribution for Θ. Θ is a continuous random variable over the
interval [0,1], and in principle its probabilities of falling in any given sub-interval can be
represented by any probability density function that is defined as non-null only in the [0,1]
interval.  A common problem with Bayesian methods is that they require very complex
calculations, unless the distribution functions used are severely constrained to make them
analytically tractable. In this paper, we take the opposite approach: we perform all the
calculations via numerical approximations, so as to be free to consider any shape of the
probability density function, if it seems to represent an interesting real-world situation. We
will then represent these distributions in an approximate form for the purpose of computation.
In particular, for the sake of simplicity, we will often approximate Θ as a discrete random

variable, which may take a finite sequence of discrete values, ϑ0, ϑ1,...ϑN. These values are

the possible failure rates of the program. By convention, we define ϑ0 = 0.

Intuitively, a program only has one failure rate (under the given input profile). By assigning
probabilities to the different plausible values of Θ, we describe our uncertainty about it:
although we do not know its value, we know - through qualitative appraisal of our program
and through testing - something about which values of Θ are more or less likely. In a sense,
the program whose reliability we wish to predict can be seen as a program extracted at
random from the "population" of all the programs that could have been developed under the
same general conditions (which determine the distribution of Θ). Seen in these terms,
subjective probabilities can be described in the usual "frequentist" terms, i.e., in terms of the
fraction of trials on which a certain event happens: each notional "trial" is the production of a
program under the same circumstances under which the actual program was produced, and
the "event" is "this program will have a given failure rate, under the assumed type of
operational use". Then, by assigning probabilities to the different possible values of the
failure rate, we represent our knowledge and beliefs about the programs that we could
develop: for instance, we could plausibly believe that programs so different from the
requirements as to have very high failure rates are very unlikely to be produced or, that
programs with failure rates in a certain interval are twice as likely to be produced as those
with failure rates in another interval.

We hence describe our knowledge or belief about the given program via a probability
distribution for its failure rate Θ. This will be represented by a probability density function:

aΘ(ϑ) = d
dϑ  (P(Θ ≤ ϑ))

or, for our discrete approximation, by a succession a0, a1, ..., aN, where:

ai = P(Θ = ϑi)
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As assigned before testing, the succession of the ai values represents our prior  (subjective)
distribution of the failure rate, because it represents our knowledge before  we observe some
new evidence about this program. This distribution must be obtained from experience: in an
ideal case, we would have measured the failure behaviours of many other programs
previously developed for similar applications and under approximately the same conditions,
and we could thus consider the new program as a new sample from a known population for
which we have a reasonably good knowledge of this distribution.

Note that, in particular, a0 = P(Θ = 0) is the prior probability that the program is perfectly
correct, or defect-free: in the case of simple programs and good development and V & V
practices it certainly makes sense to believe that a non-null subset of the programs that one
could produce would be defect-free when presented for acceptance testing.

We then test the program (on T independent test cases) and observe no failures. Clearly, this
means that the program is more likely to be, in the "population of the possible programs", one
of those with a lower failure rate than one of those with a higher failure rate. In other words,
after testing, we can update our belief about the reliability of the program, taking into account
the test results. The updated belief is expressed by a posterior distribution, which we will
represent here by a succession b0(T), b1(T), ..., bN(T).  This posterior distribution can be
obtained by straightforward application of Bayes' theorem. By definition:

bi(T) = P(Θ = ϑi | the program has passed T independent tests from the given input profile)

and by applying Bayes' theorem:

P(Θ = ϑi | T tests passed) = 
P prior(Θ =ϑ i ) P(Ttestspassed|Θ = ϑi )

P prior(Ttestspassed)
 (2.1)

If Θ = ϑi , the probability of T failure-free tests is (1-ϑi )T (assuming that the testers detect all
failures, the "perfect oracle" assumption); substituting in (2.1) we finally obtain the values of
the bis as:

bi(T) = 
ai(1− ϑ i)

T

a j
j = 0

N

∑ (1− ϑ j )
T

  (2.2)

Notice that, for i = 0, the probability of T failure-free tests is 1 (irrespective of T). Hence,

b0(T) = P(the program is perfect | T tests passed) = 
a0

ai
i=0

N
∑ (1− ϑ i )

T

This simple, yet rigorous, model allows us first to give unambiguous mathematical statements
of different plausible hypotheses about the program under test, by varying the prior
distribution of the failure rate, and then to observe how these hypotheses affect the predicted
reliability or other probabilities of interest, derived from the posterior distribution of the
failure rate.

3. Expected failure rate after successful testing
We are now in a position to study examples of dependability assessment. There is a further
issue to be decided: which measures of predicted reliability we should use in decision-
making. Throughout this paper, we consider the case that we are interested in a program's
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"failure rate", Θ (for arguments about alternative measures, see e.g. [9]). So, we may be
interested in the expected value of the failure rate after testing, i.e., the mean value of its
posterior distribution:

E(Θ) = ϑibi
i=0

N
∑ (3.1)

For instance, the next figure shows how this expected value decreases as the number of

successful tests increases. For the prior distribution, we chose here the simple case of a

uniform prior distribution: aΘ(ϑ) ≡ 1 for all ϑ∈[0,1]. We shall see later that this distribution

occupies a privileged position in the literature.

As we test the program and observe no failures, the expected value of Θ decreases as 1/(2+T),
as shown in the figure below.
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Fig. 3.1: Expected failure rate as successful tests accumulate, assuming that the prior
failure rate distribution is uniform between 0 and 1.

However, the mean of Θ is not a very useful measure for a manager who needs to decide
whether the software can be released. It only indicates how many failures we could expect
from executing many programs in our notional population (of which we have only produced
one in actual fact), but not the probability that this program is satisfactory, because a mean
does not show whether most programs would have similar, satisfactory failure rates, or
whether there would be a large spread between very reliable and very unreliable programs.

4. Probability of achieving a reliability target
We can choose a better indicator than the expected failure rate if we consider that the very
purpose of assessing a program via statistical testing is to check that it satisfies its reliability
requirements. In many cases a reliability requirement is stated as an allowed upper bound on
the failure rate in operation, i.e., it is required that :

Θ ≤ ϑR
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Then, an appropriate output of the assessment procedure is the probability that the program
satisfies this reliability requirement, given that it passed T tests.  We will call this Psucc(T).
Thus, by definition:

Psucc(T) = P(program has satisfactory Θ | program passed T tests)

Again, this probability is easily derived:

Psucc(T)= bi
i=0

R
∑ =

ai (1− ϑ i )
T

i=0

R
∑

ai
i=0

N
∑ (1− ϑ i )

T
(4.1)

Figure 4.1 shows an example of how Psucc varies as successful tests accumulate.

failure rate

After 0 tests

failure rate

After 10,000 tests

Fig. 4.1 Comparison of prior(left) and posterior (right) probability distributions. The
prior is an arbitrary, plausible bell-shaped curve chosen for the sake of illustration. A
requirement Θ ≤10-4 is assumed, and the coloured areas represent the probability that Θ
exceeds this value. Observing 10,000 successful tests reduces this probability from 21 %
to approximately 5 %, i.e., it increases Psucc  from 79% (prior probability) to 95 %
(posterior probability).

The prior distribution implies, for each value of T, an assignment of probabilities to the four
events:

i) "program OK": the software satisfies its reliability requirement;

ii) "program not OK": the software does not satisfy this requirement;

iii) "test success": the software will pass the T tests;

iv) "test failure": the software will not pass the T tests;

as well as for the four non-null intersections of these four events.

The following figure plots how one's knowledge about the reliability of the software evolves
as tests accumulate. The Cartesian plane is divided into four bands, and their heights represent
the probabilities of the different events, as indicated by the labels. The two upper bands
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together represent the probability that the software fails at least once in the T tests: clearly,
this probability increases with T. This event represents a project failure, requiring the
software to be modified before it can be resubmitted for acceptance testing. Within the event
"the software passes T tests", the two lower bands represent respectively the case in which the
software is indeed satisfactory, and the case in which it is not, but it does pass the acceptance
test, thus possibly deceiving us into accepting it. The ratio between the height of the bottom
band and the combined height of the two bottom bands represents the probability that the
software is satisfactory (Θ ≤ ϑR), given that it has passed T tests.

Number of tests passed
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1 2500 5000 7500 10000

P( test failure)

P(not OK)

P( test success)

P(OK and test failure)

P(not OK and test failure)

P(not OK and test success)

P(OK and test success)

Fig. 4.2: Probabilities of interest in the assessment of software reliability via statistical
testing. This plot was derived assuming that the reliability requirement is Θ ≤ 10-4 that
the prior distribution for Θ is uniform between 10–5 and 10–3 and 0 elsewhere, except
for a non-null probability that the program is perfect (P(Θ = 0) = 0.01).

This figure illustrates the meaning of Bayes' theorem applied to our problem. The sum of the
heights of the "OK" bands stays constant as T varies. It equals the prior probability of
success, i.e., the fraction of satisfactory programs in our notional population of possible
programs. However, when we consider the posterior probability that a program is
satisfactory, conditional on its passing T tests, we concentrate our attention on those possible
programs that would indeed pass T tests. These are represented by the two bands collectively
labelled P(test success). This subset of the population obviously shrinks as we perform more
tests, but, more importantly, within this subset the fraction of programs with an unsatisfactory
failure rate decreases as well, and the fraction of those with satisfactory failure rate increases.
This latter fraction is our posterior probability Psucc(T): the probability that a program has the
required low failure rate, conditional on its passing T tests.

5. Reliability assessment with different prior distributions
5.1. Uniform prior

Assigning prior distributions is difficult. An appealing notion is to look for a prior distribution
that represents "ignorance" about the variable of interest. This is actually impossible. Any
representation of "ignorance" actually embodies a statement about which events are equally
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likely. For instance, do we think that the true value of Θ is as likely to lie within the interval
[0.1, 0.2] is as within [0.2, 0.3], [0.3, 0.4], etc.? Or do we think that its is as likely to fall in
[0.1, 1] as in [0.01, 0.1], as in [0.001, 0.01], etc.? Both these beliefs could be construed as
"ignorance", yet they describe very different distributions.

However, a prior distribution which can be said plausibly to represent minimal knowledge, if
one accepts certain requirements for mathematical symmetry [4, 7], is the uniform prior,

P(Θ = ϑ) ≡ 1 ,   for all ϑ∈[0,1]

We will thus use this prior distribution as a term of comparison with the others that we are
going to study in this paper. For this prior, the posterior distribution is a "Beta" distribution,
with a probability density function given by:

f Θ (ϑ ) =
ϑ a−1(1− ϑ )b−1

Β(a,b)
 (5.1)

where a and b  are two real valued, positive, parameters and B(a, b) is the "Beta" function.

With a uniform prior, the parameters of the posterior Beta distributions after T successful
tests take the values a=1,  b=T+1 (Beta distributions are further examined in Section 5.4).

5.2. Implications of the prior probability that the program is correct

A case of some interest is that of software that has a non-negligible probability of being
defect-free. Some practitioners would consider this plausible for, e.g., simple software
developed under very stringent quality criteria, as mandated for some safety-critical software
(they might qualify this belief by limiting it to defects with safety-critical implications). This
knowledge can be represented as a certain non-zero probability for the event Θ = 0. If Θ is
represented as a continuous random variable, the value of its probability density function for
Θ = 0 is then represented by an impulse or "delta" function.

Fig. 5.1 shows the effects of this kind of prior distribution. The prior distributions that give
rise to these three curves only differ in the prior probability of perfection, a0; in all three, the
probability density function is constant over the rest of the x axis, a(ϑ) = 1-a0 for all 0<ϑ ≤ 1.
The striking feature is that a high Psucc  can be reached with very few tests. So, it is correct to
believe that some confidence in correctness should bolster one's trust in a program a great
deal. The real problem is in justifying one's confidence in correctness, since Psucc is very
sensitive to variations in a0.  Of course, failing one test would make the posterior probability
of correctness b0 = 0.

We can also see in Fig. 5.2 how the probability of correctness, i.e., the chance that this
program is actually one of the perfect ones in our population, grows rapidly as we observe
successful tests. The curves in Fig 5.2 are quite similar to the two top curves in Fig. 5.1,
because the chosen prior density functionimplies P(0<Θ≤10-4 | T=0)=10-4 (1-a0). This makes

P(0<Θ≤10-4)«P(Θ=0) (both when the latter is 1% and when it is 50%), for most values of T.

Since, by definition, Psucc= P(Θ=0)+P(0<Θ≤10-4), this inequality implies Psucc≈P(Θ=0).
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Prior prob. of  correctness
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is 1%

Prior prob. of
correctness 
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Fig. 5.1: Effects of a non-null prior probability of correctness on the posterior
probability of achieving a reliability target (ϑR = 10-4). The number of tests passed is
shown on a logarithmic scale.

Number of tests passed

0

0.5

1

Prior prob. of

correctness is 50%

Prior prob. of

correctness is 1%

1 10 100 10 3 10 4 10 5

Fig. 5.2: Posterior probability of correctness as successful tests accumulate

5.3. Prior distributions where high values of Θ are very unlikely

We may expect that usually, with a quality development process, a program that is ready for
acceptance testing is very unlikely to have a high failure rate. This is by no means certain: at
least one release of the Space Shuttle software had a bug which would cause it to fail in the
start-up phase more frequently than once in 100 start-ups [11]. However, let us examine the
consequences of such assumptions.  We model the assumption in a stylised fashion, by
assigning zero prior probability to high failure rates: the upper bound on Θ is no longer 1, but
a smaller number. The figure 5.3  shows the consequences of such prior distributions on
Psucc(T).
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Four prior distributions for the failure rate are considered, all of them uniform in the interval
between 0 and an upper bound, which is (respectively for the four curves, from top to
bottom): 5*10-4, 10-3, 10-2 and 1.

Notice that:

- if we assumed an upper bound of 10-4, then the curve would be constantly 1: we would
know from the beginning that our software is "good enough". This shows that stating a
belief that high failure rates are unlikely in the form of an upper bound on Θ actually
amounts to a quite strong assumption;

- after about 10,000 tests (when Psucc(T) ≅  0.5, the four curves do not differ by much. At
this stage, we have practically eliminated the possibility of a very high failure rate,
independently of how high its prior probability was;

- these are all quite unfavourable prior distributions: a developer believing these would
expect (for the most optimistic of the three) that 8 out of 10 programs do not achieve the
target reliability.

Number of tests passed
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1

1 10 100 103 104 105

Upper bound is
0.0005

Upper bound is

0.001

Upper bound is

0.01

Upper bound is 1

Fig. 5.3:  Effects of prior knowledge that the programs cannot have a very high failure
rate on the posterior probability of achieving a reliability target (ϑR = 10-4)

5.4. Bell-shaped prior distributions of Θ

Human error, which causes software failures, is a natural phenomenon arising in an activity
which combines a large number of intellectual tasks. This may lend some credibility to the
conjecture that the distribution of failure rates will approximate a Gaussian distribution or
other bell-shaped curve. We have considered here a few prior distributions of the Beta family,
which are shown in figure 5.4 below.
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Failure rate

0 0.5 1

Uniform

(a=1, b=1)

a=3, b=3

a=10, b=10

Fig. 5.4  Three probability density functions for distributions in the Beta family

The Beta distribution has the property of being the conjugate distribution for this particular
inference process: if our prior distribution is a Beta distribution with parameters {a, b}
(including its limit case, the uniform distribution), the posterior distribution (after any number
T of tests with any number r of test failures) will also be Beta, with parameters {a+r, b+T}.
For instance, in Fig. 5.5 we assume that the prior distribution for the failure rate is a Beta
distribution with parameters a=3 and b=3 and show the posterior distributions derived after
different numbers of successful tests.

Failure rate

bi

1E-09 1E-08 1E-07 1E-06 1E-05 1E-04 0.001 0.01 0.1 1

After 100,000 tests

passed

After 10,000 tests

passed

After 1,000 tests

passed

After 100 tests

passed

Before testing

Fig 5.5  Posterior probabilities after various numbers of tests, assuming a prior Beta
with a=3 and b=3 (rightmost curve). Note the logarithmic scale for Θ.
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It should be noticed that, given a certain experience of previous programs, assigning a mean
for a bell-shaped prior distribution would be relatively non-controversial. However, it is the
shape of its "tails" that would be problematic. For instance, if some past program was never
observed to fail, would this mean a comparatively high probability that the program is
correct, or simply that those programs had a very small, non-zero failure rate? These
problems of inference can be solved, but the beliefs about the shape of the distribution for
failure rates that are too low to be frequently observed would greatly affect the solution.

A problem with the curves in Fig. 5.4 is that they imply a high prior expected value of the
failure rate, which is implausible. Nobody would start a software project if the probability of
success were as small as these prior beliefs imply.  A rough approximation of a bell curve
with a low probability of a high failure rate is a Beta distribution "scaled down" so as to take
non-zero values only between 0 and a certain upper bound, as we assumed in section 5.21.

Thus, in the Fig. 5.6 we show how Psucc varies vs. the number of successful tests, for
different prior distributions in the Beta family. The better cases are obviously those assuming
an upper bound smaller than 1, here 10-3.
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and upper
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Fig. 5.6 Posterior probability Psucc of achieving a reliability target (ϑR = 10-4), for Beta
prior distributions and for Beta distributions limited to a sub-interval of the (0,1)
interval. a  and b  represent the two parameters of  a Beta distribution

1  One can instead select a Beta distribution with a high Psucc and non-zero values between 0 and 1 by varying

the two parameters, a and b, separately. We chose to show here intuitively simpler distributions.  In an actual

software assessment exercise, we would not recommend adherence to any analytically simple distribution, but,

rather, experimenting with various plausible representations of one's assumptions, to make sure that one's

predictions are not just an artefact of a peculiar mathematical representation. Numerical calculations via

software tools make this approach reasonably inexpensive.
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6. Modelling more complex scenarios
All the examples shown this far rely on two assumptions: the outcome of one test case for our
program is independent of the outcome of the previous tests; and the probability of failing a
test is the same as that of failure on one execution during actual operation. These assumptions
are satisfied if we test with test cases independently sampled from the usage profile, and  we
recognise every program failure during test ("perfect oracle" assumption). In an actual testing
exercise, some of these assumptions may be violated, by accident or on purpose. For instance:

- our oracle may be less than perfect: some erroneous behaviours are not recognised;

- our oracle may be "better than perfect": by probing internal variables of the program, we
can recognise anomalous behaviours (and thus detect defects, and send the program back
to be fixed) even if they do not manifest themselves via an erroneous output [10];

- our test profile may not faithfully represent the future operational input profile, because of
the uncertain knowledge about it;

- we may choose to alter the test profile, for instance because we have a notion that we can
make it more "stressful" for the program; we may even choose test cases not by a
statistical method, but by some method which we think more cost-effective for finding
defects (if they are present), and yet would like to use the fact that testing produced no
failure to improve our reliability predictions (an example of this is analysed in [7]).

Some of these changes (especially among those concerning test directed by human testers on
the basis of some defect-seeking method) would violate the independence assumption,
making our mathematical model rather more complicated. We will only consider here those
that do not violate it, but only change the conditional probability of a program failing a test,
given the program's operational failure rate.  Until now, we had

P(test fails | Θ = ϑi) ≡  ϑi  for all i

Now, we will have instead a separate function δ(ϑ) (that is, in our discrete representation, a

succession δi), defined as

δi = P(test fails | Θ = ϑi)

Each probability δi  may greatly differ from the corresponding ϑi , except for the obvious

constraint that δ0 = ϑ0  =0 (fault-free program). Then, the probability of the program passing

T tests, if Θ = ϑi, is:

P(T tests passed | Θ = ϑi ) = 1-(1-δi )T

and substituting this expression in the previous expressions for bi(T) (2.1), we obtain, instead
of equation (2.2):

bi(T) = 
ai(1−δ i)

T

a j
j = 0

N

∑ (1− δ j)
T

  (6.1)

and can derive expressions of E(Θ) (3.1) and Psucc (4.1) for this more general case.

The values of the succession δi represent the combined effect of all the factors listed above:
discrepancies between the input distributions in testing and in operation, the oracle coverage,
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etc. So, for instance, stating that δi  > ϑi means that for those programs in our notional

population that have failure rate ϑi, the probability of failing a test is greater than the
probability of failure in operation. This means that for those programs, on average, the oracle
is especially effective and/or the test selection criterion we use is especially effective in
causing defects to manifest themselves, etc.

It is clear that a given succession δi may represent the effects of many different combinations
of the above circumstances. We have not yet begun to explore the variety of knowledge or
intuition about a program's structure and behaviour that could be mapped into the conditional
distribution δi. This will depend, for instance, on whether a given failure rate is more likely to
be the product of one or another type of defects, whether these defects are more likely to be
found by statistical testing or by testing specifically aimed at activating those defects that the
testers consider most likely, etc.

We now consider some illustrative situations in which δi can be described as a simple

function of Θ. Simple distributions that it seems interesting to explore include:

- δi  is proportional to ϑi, i.e.,  δi = k* ϑi.  Setting k < 1 would represent the case in which
the oracle used fails to detect a fraction of the failures, and this fraction is the same
irrespective of the program's actual failure rate (a similar scenario is studied in [12],
deriving "classical" confidence bounds). Setting k > 1 (under the condition, of course, that
δi ≤ 1 for all i) would represent, for instance, the case in which we are able to effectively
"stress-test" the software through our selection of test cases. In Fig. 6.1 we show again
Psucc vs. the number of tests passed, but this time we vary the probability with which we
assume errors or failures are detected under test. As one could expect, the higher the
detection rate (compared to the failure rate in operation), the more rapidly Psucc increases.

Number of tests passed

0

0.5

1

1   10   100 1000 104 105

δ=2∗Θ if Θ≤0.5, δ=1 elsewhere

δ=Θ

δ=0.5∗Θ

Fig. 6.1 Posterior probability P succ of achieving a reliability target (ϑR = 10-4), assuming
that the prior failure rate is uniformly distributed between 0 and 1, but that the
detection rate δ is different from the failure rate

- δi  is constant: it does not depend on the operational failure rate, except of course that

δ0=0. One of the scenarios in which this could be true is a special case of programs which
are tested with inputs chosen by human testers. One may conjecture that the failure
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behaviour of the programs is mostly determined by the following phenomenon. There are
in the program's input space many "sensitive spots" (determined by the program's
specifications, not by the specific program actually produced), such that if there are
defects in the code, the resulting failure regions will be likely to be centred in one of these
spots. Furthermore, variations in failure rate between possible programs do not imply a
marked variation in the number of failure regions in the input space. Rather, programs
with higher failure rates tend to have approximately the same number of failure regions as
programs with lower failure rates, but with a higher average probability of being "hit" by
an input in operation. In addition, tests are chosen by human testers who have an intuitive
notion of where the "sensitive spots" are, so that each test does hit a sensitive spot: if that
sensitive spot has a failure region around it, the program will fail the test. So, the
probability of test failure is not affected by the size of failure regions (hence by the failure
rate of the program), which is constant, but only by their number relative to the number of
sensitive spots.
It is clear that this is an extreme scenario, but useful to consider as an extreme of what
may happen in reality, e.g. if "difficult spots" in the functional specification are the main
cause for defects.
This hypothesis has interesting consequences. Since δi =0 for i=0, δi=δ elsewhere,

b0(T) = 
a0

ai
i = 0

N

∑ (1−δ i)
T

  = 
a0

a0 + ai
i=1

N

∑ (1−δ )T
 =

a0

a0 + (1− a0 )(1−δ )T

and for  i ≠ 0:

bi(T) = 
ai(1−δ i)

T

a j
j = 0

N

∑ (1− δ j)
T

 =
ai(1−δ )T

a0 + a j
j =1

N

∑ (1− δ)T
  = 

ai(1−δ )T

a0 + (1− a0 )(1−δ )T  = 
ai

a0

(1−δ )T +1− a0

i.e., b0 (the probability that the program is correct) increases with successful testing, and
all the bi for i≠0 (probabilities of non-zero values of Θ) decrease by the same factor. As
for the probability of having the required reliability:

Psucc(T) = bi
i = 0

R

∑  = 
a0 + (1− δ)T ai

i=1

R

∑

a0 + (1− a0 )(1−δ )T

and, in particular, in the limiting case in which a0=0, this probability does not increase
with successful tests. In other words, the tester has no information as to whether
successful tests "eliminate" from consideration failure-prone programs or highly reliable
programs.

7. Conclusions
We have shown through some examples how a standard Bayesian inference procedure can
clarify reasoning about evidence from testing. This method allows one to state one's
expectations derived from factors others than testing, and then to calculate the measure of
added trust that can be derived from successful testing. The method can also be used to model
the effects of  many important factors affecting testing, such as the fault-revealing power of
debug-oriented testing, imperfect test oracles, testability measures.

The whole method depends on assigning a prior distribution for the failure rate of a program.
This is clearly difficult. However, many decisions in software projects are now made on an
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intuitive basis, i.e., on the basis of assumptions that are not subjected to any experimental
verification. These assumptions can be modelled as prior distributions, and the decision
makers can thus see what could be inferred from testing if their assumptions were true;
whether the conclusions are sensitive to small errors in these assumptions, or rather robust,
and what would be the consequences if alternate plausible conditions held instead. They can
see, given a decision that seems intuitively correct, which assumptions would be needed to
justify it, and whether they are confident enough in those assumptions. Last, but not least, this
process allows learning about the assumptions themselves, by the usual scientific method of
conjecture and refutation. If the predictions based on our priors prove to be wrong (e.g., if of
ten programs predicted to have Θ < ϑR with probability 0.9, only 1 turns out to be so
reliable), we will correctly be drawn to suspect our assumptions and attempt to correct them.

In intuitive reasoning in uncertain situations, people often manifest "overconfidence bias" :
they are more confident in the truth of their beliefs than is warranted by empirical
measurement. This risk must obviously be taken into account when relying heavily on expert
judgement for assigning prior distributions. It is then useful to be able to visualise these
opinions and their consequences in clear mathematical terms.

Many intuitions that practitioners have about software are in terms of "microscopic"
behaviour: which kinds of defects predominate, whether a certain testing method is more
effective against a kind of defects or another, etc.  Translating these intuitions into clear
statements about probabilities on a "macroscopic" level - as our ai  distributions, for a start -
will allow more consistent decision-making and some learning about when such intuitions are
true. We see this "translation" - exploring more sets of assumptions of practical interest - as
the next task in this work.
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