
Originally published in Proc of the 9
th

 Safety-critical Systems Symposium, Bristol 2001
 Springer-Verlag London Ltd

Design Diversity: an Update from Research
on Reliability Modelling

Bev Littlewood, Peter Popov, Lorenzo Strigini

Centre for Software Reliability, City University

London, U.K.

Abstract

Diversity between redundant subsystems is, in various forms, a common design approach for
improving system dependability. Its value in the case of software-based systems is still
controversial. This paper gives an overview of reliability modelling work we carried out in recent
projects on design diversity, presented in the context of previous knowledge and practice. These
results provide additional insight for decisions in applying diversity and in assessing diverse-
redundant systems. A general observation is that, just as diversity is a very general design
approach, the models of diversity can help conceptual understanding of a range of different
situations. We summarise results in the general modelling of common-mode failure, in inference
from observed failure data, and in decision-making for diversity in development.

1 Introduction and Background

Diversity is a common design approach for protection against common-mode failures in redundant systems,
mostly used in critical applications. It is hoped that if redundant channels are implemented in different ways
(diverse "versions"), the risk of common design flaws causing common failures will be reduced. The growing
adoption of software-based systems, and the attendant doubts about the risk caused by design faults in the
software, justify increased interest in diversity. Well known examples of diversity in software are in the aerospace
and railway industries, but some form of diversity is present in many software systems.

Research in software diversity was very active in the 1980s, including several experiments on forms of
"multiple-version programming" and reliability modelling work. Activity then subsided for about 10 years. In
the last few years, the Centre for Software Reliability (CSR) at City University has done some novel work in
modelling the reliability of diverse systems to gain insight for supporting decisions. This paper is meant as a
short summary of these results to date; mathematical details are available in several published papers. For a
summary of previous results and references to previous literature, we refer the reader to [Littlewood 2001;
Littlewood 1996].

There are two kinds of open technical questions of practical interest:

• achievement of reliability: a manager or designer wishing to apply diversity has no well-founded
guidance as to which methods will be most effective or cost effective, among the many that are available.
Diversity is sought by decisions in project management and system design: examples include separating
the development processes, dictating different algorithms, different programming or specification
languages, etc. But the effects of these decisions on failure diversity (i.e., on reducing the correlation
between failures of the two channels) is indirect, as shown summarily in Figure 1 below. Very little is
known about how to choose the "diversity-seeking decisions" shown at the top so as to produce
effectively and efficiently the diversity in failure behaviour, shown at the bottom, and thus improved
system reliability and safety.

Design Diversity: an Update from Research on Reliability Modelling

2

Process
'diversity'

Product 'diversity'

'Diversity' of product
failure behaviour

Diversity-seeking decision (DSD)
creates

Process BProcess A

constrains development,
producing

common environment
 selects demands

Version A Version B

pattern of correct
responses and failures

determines which
demands will fail

constrains development,
producing

determines which
demands will fail

pattern of correct
responses and failures

Figure 1. The different facets of "diversity" and their inter-dependence, for a two-version system.

• assessment of reliability: when it comes to assessing the reliability of a diverse-redundant system,
we would like to exploit the knowledge that diversity is present, both to claim higher system reliability
and if possible to quantify it. Theoretical and practical research in the 1980s showed that one cannot
assume failure independence even if the two channels are developed in a "strictly independent" fashion.
Conceptual models developed by Eckhardt and Lee (EL model), and Littlewood and Miller (LM model)
(and by Hughes for physical failures) suggest that if the two development processes are similar, though
rigorously independent, positive failure correlation is to be expected. These models are based on the idea
that for the builders of diverse versions of a program some demands will presumably be more difficult -
more error-prone - than others. So, even if diverse versions are built "independently", their failures are
more likely to happen on certain demands than on others, and this leads to positive correlation. If a project
is managed so as to "force" diversity, independence or even negative correlation between failures of the
two channels could be achieved. But there is no practical method yet of judging the level of correlation
between the channel failures, and hence of system reliability, short of extensive testing of the system as a
whole. That is, although diversity improves reliability, the knowledge that diversity is present brings no
quantifiable advantage during assessment.

Reliability modelling may be useful for both problems. The problem of choosing how to apply diversity for
improving reliability is one of predicting the likely outcomes of the methods chosen; that of assessment is a
problem of predicting the future behaviour of a specific system, using any specific information available about
it.

Given a redundant system, expressing its probability of failure in terms of those of failures of its components
and combinations thereof is a well understood process. The open problem is in assigning a probability to the
joint failure of two components, when failure independence cannot be assumed. This probability - how to
evaluate it or reduce it - is the topic of our research. Our studies thus refer usually to the simplest diverse
system, depicted in Fig. 2: a two-channel, 1-out-of-2, diverse, demand-based system, as could be for instance a
protection system. We expect that better understanding of diversity in this basic case will lead to better
understanding for more complex applications.

Boolean
outputs, to
wired-OR
actuators

}
Sensor readings
(of same or
different
physical
variables)

Channel A
 (version A)

Channel B
 (version B)

Figure 2. Reference system for this discussion. The system is subjected to discrete demands, and the
measure of interest is the systems probability of failure per demand (pfd), i.e. the probability of both
diverse channels failing on the same demand.

Design Diversity: an Update from Research on Reliability Modelling

3

We have divided this summary into the following themes: what can be expected from diversity in general; design
decisions for building diverse systems; assessment, and design for assessment, of diverse systems; diversity in
the development process. In the last section we discuss future developments.

2 What Can Be Expected from Diversity in General

In the system of Fig. 2, diversity obviously improves dependability: the pfd of the system cannot be higher than
that of either channel. For more complex configurations, which do not by themselves guarantee reliability
improvement, all known evidence still points to some degree of improvement. However, the practical questions
about the usefulness of diversity, for any specific application and industrial context, are:

• does it deliver substantially better reliability (or substantially better chances of achieving high reliability)
than can be achieved without it? This would be attractive in applications where very high reliability is
required;

• alternatively, does it deliver a reliability improvement more cost-effectively than alternative techniques?

2 . 1 "Independent Faults" Models

The EL and LM reliability models provide useful insight (see [Littlewood 2001], but have at least two
limitations:

• They predict the average [un]reliability of versions and pairs of versions. To quantify the risk of exceeding
a desired upper bound on failure probability, we need instead distributions of the pfd.

• They use parameters that would be unknown in practice when trying to predict the reliability of a system.

To improve on this, we modelled plausible assumptions on how faults are created in diverse software, and
analysed their consequences. The paper [Popov 1999a] explains our method and some interesting conclusions
about how development processes may affect reliability of diverse systems.

To overcome the limitations of the EL/LM models, we needed to add extra assumptions to theirs. These models
use as parameters the probabilities of each demand being a failure-causing demand; they need to be extended with
the joint probabilities of any two (or more) demands being failure-causing demands. We know from experience
that faults affect sets of many possible demands. So, we posited the following simplified model of how faults are
created in programs and how they cause failures:

• there are finite sets of potential faults, each potential fault causes a certain set of demands to become a
failure region; the sets are the same for all versions;

• for each possible version, the presence or absence of each fault (which is a random event) is independent of
the presence of any other fault, and of the presence of any fault in another version. This is the novel
assumption that allows us to predict distributions of pfd of versions and systems.

Even with very simple versions of such models [Popov 1998a], interesting observations are possible. For
example, one could observe the effect of diversity on reducing the "tails" of the distribution of the pfd -
essentially, reducing the risk of unacceptably "bad" systems that, as far as we know from experience, may be
present even with "good" production processes. A conjecture that this model suggests is that the efficacy of
diversity is affected by the probabilities of individual potential faults, more than by their contributions to the pfd
of the versions they affect.

We then studied [Popov 1999a] the more general model and what it predicts about the reliability gains given by
diversity. An interesting conclusion is that an assessor who has estimated an upper bound on the pfd of a single
version, and an estimate of the maximum likelihood of any one fault being present in the software, can then give
a conservative bound on the pfd of a two-version system, given by the product of the two. Assessors and project
planners often need to reason with such rough estimates of probabilities that they cannot measure (e.g., when
judging achieved SILs) and this result can assist their judgement or help them to check it for consistency.
Another question we ask in this paper is how process improvements would affect the advantages of diversity. It
appears that the answer must depend on the specific kind of improvement, and we can actually show criteria for
decision (see also section 2.3).

In conclusion, we expect these models, although necessarily somewhat unrealistic in their details, to offer these
advantages:

• a more convincing analysis than previously available of the implications of various plausible
assumptions about diverse developments;

Design Diversity: an Update from Research on Reliability Modelling

4

• a better chance of empirical verification than is possible for the informal claims often made for (or
against) diversity.

2 . 2 How Effective is Functional Diversity?

Functional diversity is commonly thought to be more effective than simple "design" diversity. "Functional
diversity", in this context, means that the redundant channels differ in more than the internal implementation of
their software: they also differ at least in the physical variables they sample and the actuators through which they
affect the controlled system (and often in the physical principles on which their computations are based, the
implementation technology and so on). Thus, to give a simplified example, a reactor protection system might
comprise two versions, one of which makes its trip decision based on temperature inputs, and the other on
pressure inputs.

Functional diversity is an attractive way of forcing the two design teams to be "intellectually diverse" in their
solutions to the design problem. If the designs are "very different" in some meaningful way, there is a good
chance that they will differ usefully in the faults they contain, and thus tend not to fail together. The practical
intuition here is straightforward, and it thus seems a plausible approach to the achievement of reliability in the
fault-tolerant system. The question we address in our work [Littlewood 1999] is how much could be claimed for
the use of functional diversity: specifically, could a claim of independence of version failures be supported?

This claim could be stated as follows: if a thorough analysis of the design shows no direct source of common-
mode failures (e.g., common software modules between the channels), could we then assume that any failures of
the two channels are statistically independent? (any suspected sources of common-mode failures can then be taken
into account by applying some correction factor or claim limit on the system reliability).

In terms of the model, we show that such claims for independence between functionally diverse systems seem
rather unrealistic. Instead, it seems likely that functionally diverse systems will generally exhibit positively
correlated failures, and thus will be less reliable than a simple assumption of statistical independence would
suggest.

Our model of functional diversity generalises the earlier EL, LM and Hughes models. It is based again on the
notion of variation of "difficulty" - in the example here within the "pressure" and "temperature" demand
subspaces P and T - and in particular how these difficulty functions are correlated over the allowable set of

demands in P ⊗ T . Only if "difficulty" did not vary (for the builders of either channel) between demands could
we expect independence to hold, without detailed knowledge about the difficulties for the two channels. One
interpretation of our result is that functional diversity is just a more general kind of forced diversity, similar to
that already seen for diverse software versions that execute the same inputs as one another.

Of course, this reasoning does not affect the argument that functional diversity is an effective way to pursue high
reliability. What is not possible, however, is to claim that functional diversity is sufficient in itself to justify an
assumption of independence in the version failures. It leaves the system assessor with the task of evaluating
precisely how dependent the versions are before he/she can evaluate the reliability of the system. This is not
easy, as we have seen in other contexts.

2 . 3 Is It Better to Use Diversity or to Seek High Reliability in a Single
Version?

Whether diversity is a convenient means for delivering high reliability has long been a subject of debate. For
instance, [Hatton 1997] strongly argues that design diversity is now more effective than other methods, and that
its cost-effectiveness should increase with improvements in the reliability delivered by common development
processes (a contention shared by other experts). He first considers that the reliability advantage given by
diversity in the Knight-Leveson experiment [Knight 1985]. was arguably greater than what "state of the art"
development processes usually give over "ordinary" processes. He then points out that, if versions failed
independently, increasing the reliability of the versions would also increase the reliability gain given by
diversity. Although no similar result is proven for the general case of non-independent failures, some
experimental results point in this direction, and he concludes that the balance of evidence is in favour of diversity
as a means for achieving high reliability.

This prompted us to analyse the issue from an alternative viewpoint, since we also believe that the potential of
diversity is often dismissed without proper consideration. We conclude that there is insufficient basis for deciding
whether improved processes (in the sense of general improvements in delivered reliability) will usually make
diversity more or less effective a solution, and hence how it will affect a comparison with other ways of
delivering improved reliability. Our argument is two-fold:

• in terms of modelling [Popov 2000] if we model the effects of process improvements in the most
intuitive way - as a decrease in the probabilities of each residual fault being present in the finished

Design Diversity: an Update from Research on Reliability Modelling

5

versions - it is apparent that process improvement does not necessarily favour diverse systems; whether it
does depends on the detailed values of the model parameters;

• in terms of empirical data, we examined [Littlewood 2000c], published data from two experiments which
produced many versions of the same software [Knight 1985; Eckhardt 1991]. In the former experiment,
the versions with higher reliability seemed also to produce the higher reliability gains when combined in
fault-tolerant configurations; in the latter, usage profiles in which the versions were individually more
reliable were also those in which combining them into fault-tolerant configurations would produce the
lesser gains.

Decreasing gain with reliability growth of the version was also observed in a simulation study of fault-tolerant
software subjected to debugging [Djambazov 1995].

If we cannot expect a trend towards higher gains from diversity as versions improve, it becomes more difficult to
trust generalisations from the results of a few experiments, either to expect that diversity will generally beat
other reliability improvement techniques or that it will become increasingly cost-effective.

All these are negative conclusions about the generality of claims that can be made for diversity (or against it, for
that matter) at the current state of knowledge. It must be underscored that they are not negative conclusions about
the effectiveness itself of diversity.

3 Design Decisions for Building Diverse Systems

Our modelling work mostly addresses simple, stylised models: they are meant either to support general insight or
to be practically applicable without requiring the estimation of too many parameters; does this work offer any
useful indications for decisions in software development, which involve multiple variables and complex
interdependencies? While modelling results cannot produce any quick and universal recipe for building diverse
systems, they offer, in our opinion, a useful viewpoint from which to consider the factors and the options
("diversity-seeking decisions") available in a specific project.

We take the viewpoint that imposing constraints on developers of two diverse versions is a way of introducing
artificial differences between the development problems presented by two versions (see Fig 1). The hoped-for
result is that the "hard problems" for the two development teams will differ and lead to any failures being
unlikely to occur together in the two versions.

Many recommendations have been made about methods for forcing diversity (we call them "diversity-seeking
decisions", or DSDs for brevity). Examples include: using different development environments, different tools
and languages at every level of specification, design and coding, implementing each function with different
algorithms, applying different V&V methods, etc.

The problem with these recommendations is that they do not usually address how (and thus why and whether)
these DSDs are supposed to improve the reliability of the delivered system. Their main weakness is that any
experience on which the recommendations are based is usually experience about the likelihood of faults, not of
failures. Yet, we know that system reliability is determined by the relationships between the likelihoods of the
faults being present and their contributions to unreliability. The probabilities of faults alone are not a sufficient
criterion for decisions: a DSD, for instance, might minimise the probability of common faults for those
potential faults that have negligible effect on failure probability, so that the DSD brings no practical gain.
However, we acknowledge that if we have little evidence of the relationship between faults and failures, aiming at
reducing common faults, via sound scientific use of the available knowledge, may be the best approach available.

The experimental approach used so far to estimate the advantages of software diversity has probably reached its
limits. Experiments become less and less affordable as we try to support specific project decisions (as opposed to
simply inquiring whether diversity may be generally useful). The space of the experimental control variables is
huge and the risk that the results would differ between the laboratory and specific real-world projects can never be
excluded. We do need to be able to generalise from the results of experiments, and this means that we need to test
theories about the mechanisms through which the DSDs affect reliability (which will be present in all projects,
acting in greater or lesser degree depending on the specific circumstances), rather than just about how much they
affect it (which is bound to vary with these circumstances). In [Popov 1999c], we suggested ways of tackling
some of the important questions by affordable experiments, for instance by investigating the intuitive
assumption that fault diversity increases failure diversity.

We have also analysed in some detail the various plausible ways in which DSD may be effective: e.g., diversity
in failure behaviour may arise from conceptual differences in the mistakes made by developers, but also from the
different effects that conceptually similar mistakes have on system versions with different internal structures.
Another effect of differences in internal structures may be that of producing different subdivisions into modules
so that in-the-small design problems may be different for the two teams, even in presence of similar in-the-large
specifications. In practice, it may be impossible to tell apart these various effects a posteriori (we can analyse

Design Diversity: an Update from Research on Reliability Modelling

6

them for individual faults and failures, but not for statistical distributions of faults and failures given a certain
development process), but understanding them is necessary to make sense of the arguments for and against the
various DSDs.

The report [Littlewood 2000e] reviews categories of DSDs and discusses their expected advantages in light of the
general discussion of the mechanisms of action, and of the anecdotal evidence available in the literature about
their perceived effects in different circumstances.

In choosing DSDs, an obvious criterion is to try and match them to the perceived threats against which diversity
is being applied. It is often claimed that the main threat, in the presence of high-quality development processes,
comes from the upstream phases of development, e.g. from faults in requirements. This suggests that diversity is
most valuable in these same upstream phases, e.g. as functional diversity. However, some limits to this
argument are worth pointing out. Whether a development process offers sufficient protection against "low-level",
coding errors has to be assessed in the specific circumstances rather than assumed on the basis of very general
evidence. Even with functional diversity, functional software building blocks in two channels may be
substantially equivalent (e.g., implementing common mathematical functions) and thus in practice not affected
by the intended "forcing" of diversity. Last, platform-level (hardware, operating systems) design faults in the
diverse channels may be sensitive to similar plant conditions, e.g. causing overloads, so that diversity in the
platforms will be necessary even with high-level diversity in applications.

4 Reliability Assessment and Design for Assessment

Although we have evidence that fault tolerance improves reliability, research results so far implied that it does
not help to assess reliability. We can make claims for the "general efficacy" of diversity as a design approach -
but such evidence would be weak for any particular system.

The EL and LM reliability models for diverse fault-tolerance gave results about what might be expected on
average. These may be useful for general design guidance. But for accepting a certain finished system, it is
necessary to predict its specific reliability (albeit with unavoidable uncertainty, represented via probability
distributions or confidence intervals).

4 . 1 Modelling Reliability of a Specific Fault-Tolerant System

First, we need a model that represents the failures of a specific fault-tolerant system. We developed such a model
[Popov 1998b], which is actually mathematically similar to the EL and LM models. A useful property of this
model is in allowing some degree of prediction on system reliability from knowledge about the two versions.
Given only limited knowledge - estimates of the versions' probabilities of failure, disaggregated by subdomains
of their common demand space - we can calculate useful bounds on the probability of system failure on a random
demand.

A claim limit for a fault-tolerant pair can be based on the plausible belief that failure independence between
versions in each subdomain is an optimistic assumption: we would typically expect their failures to be
positively correlated, as the EL model suggests. We also suggested [Popov 1999b] an upper (pessimistic) bound
on system pfd, based on the obvious fact that, again for each subdomain of the demand space, the system is at
least as reliable as the more reliable of the two versions (channels). This pessimistic bound on system pfd is
practically useful in several cases: i) if it is close to the lower bound, they together define a good approximation
to the "true" probability of system failure; ii) if the versions' reliabilities for different subdomains are negatively
correlated (which is desirable), it may be lower than the (marginal) probability of failure of the better version, the
only other known conservative bound. One should note that whether case ii holds depends on the specific data
observed for a specific pair of versions: our conservative bound cannot be chosen a priori as the more convenient
bound to use.

The reliability estimates for the two versions (for each subdomain) can typically be obtained from failure counts
over periods of operation or realistic testing and will take the form of point estimates or of confidence bounds.
Both forms can be used to calculate the proposed bounds. Typically, point estimates are misleading if few or no
failures were observed. Useful confidence bounds, instead, can always be derived, even if no failure is observed.
Uses of both kinds of estimates are illustrated in [Popov 1999b] using published data from an experiment on
software fault-tolerance [Eckhardt 1991]. The data demonstrate the usefulness of this way of estimating
reliability. For some usage profiles, our upper bounds for the system pfd were lower than the product of the
estimates of the versions pfds (over the whole demand space). That is, this more refined use of the available data
would allow one to trust higher reliability than could be derived otherwise, even with an over-optimistic
assumption of independence.

Design Diversity: an Update from Research on Reliability Modelling

7

4 . 2 Bayesian Inference for Reliability Estimation of Fault-Tolerant Software

The method just described applies when we separately consider the failure records of the two versions. If we can
observe the two-version system in operation (or realistic testing), we have additional, direct information about
the joint failures of the two versions. Estimating system reliability from these data is easily done in a black-box
fashion, counting just the number of system (i.e., common to the two versions) failures (Fig. 3a). However, this
amounts to throwing away useful information: at least in testing, we can usually see any failures of either
version, even when the presence of the other version masks them (avoids system failure). In [Littlewood 2000b]
we examine this problem of inference from clear-box testing data (Fig 3b). For each demand, we observe a pair of
binary random variables: version A fails (or not), version B fails (or not). The intuitive idea here is that by using
this additional knowledge, rather than treating the system as a black box, we might be able to gain more
confidence about its reliability. This is desirable, as black-box inference from an affordable amount of testing
will often produce only modest reliability predictions [Littlewood 1993].

For example, if we were to observe many tests and observe a reasonable number of failures of each version but
no common failures, we might reasonably claim that the failure dependence was low. Can we then claim a
greater system reliability than could be claimed just from the evidence of (presence or absence of) common
failures (the black box case)?

A Bayesian approach appears most suitable for this problem. In our work, we specify the correct inference
procedure for this scenario, and show that black-box and clear-box inference will indeed produce different results.

Both
logged
for each
demand. Channel B

 (version B)

Channel A
 (version A)

Failure or
success

Failure or
success

System
failure/
success

logged
for each
demand.

AND
Channel B

 (version B)

Channel A
 (version A)

Failure

Failure

}
3a. “Black box” scenario 3b. “Clear box” scenario

Fig. 3. Black-box vs. clear-box inference

Bayesian inference requires an assessor to start with prior distributions (a description of the assessor's beliefs
before observing the failure data) for the model parameters - here, for the probabilities of failure of each version
separately and of joint failure. We explored the problem of choosing forms of prior distributions to represent
plausible beliefs for an expert assessor before he/she sees the failure data. The purpose here is both to simplify
the task of assessors and (if possible) to reduce the computational cost of the procedure. This turns out to be a
surprisingly difficult problem, and much of our paper is concerned with identifying pitfalls for the unwary. For
example, if one applies the common method of choosing a "conjugate" prior - here, the Dirichlet distribution,
corresponding to a multinomial likelihood function - the resulting claims that can be made about system
reliability are exactly the same as the black-box results: the additional knowledge used produces no benefit.

We also demonstrate other simplified ways of building prior distributions. Some have advantages - e.g that of
erring on the side of pessimism - in specific situations. However, none of these simplified solutions is useful in
all situations.

In conclusion, we have confirmed that reliability predictions using all the "clear box" data about a fault-tolerant
system may be different from those obtained from "black-box" data. So, this approach is worth using to check on
the conclusions from other forms of assessment. On the other hand, the results about convenient ways of
expressing the priors are rather tentative and are mainly warnings about the unreliability of intuition in this
situation.

4 . 3 The Use of Proof in Diversity Arguments

We turn here to another way in which diversity can support the demonstration of high reliability.

It is common in several industries to have a form of diversity or redundancy in which the different channels or
versions have different levels of trust placed in them. In some cases a highly functional primary system is backed
up by a simple secondary procedure. For example, the present UK air traffic control system can revert to manual
operation, involving paper records of aircraft movements, in the event of certain types of computer failure. Some
computerised fly-by-wire aircraft flight control systems have a series of successively more degraded modes of

Design Diversity: an Update from Research on Reliability Modelling

8

operation, providing less and less functionality [Briere 1993]. In the case of the UK Sizewell B nuclear reactor,
the protection system has two elements: a computerised Primary Protection System (PPS), and a hard-wired
Secondary Protection System (SPS) [Hunns 1991].

All these examples have in common one or more processes providing high functionality at the price of
complexity, backed up by simpler (but less functionally capable) processes. This design principle seems
sensible, but its efficacy will clearly vary from one application to another.

The extensive extra functionality of the primary systems in these examples is present, of course, for good reason.
The increasing use of software-based systems, in particular, seems to provide opportunities for novel
functionality which, in addition to improving efficiency, sometimes increases safety and reliability in new ways.
Thus the software-based Sizewell PPS is more complex than earlier non-computerised systems partly because it
provides novel safety advantages (e.g. via the provision of extensive built-in hardware self-testing capabilities).

The problem, of course, is that a fairly complex software-based system must usually be assumed to contain
residual design faults, which make its reliability or safety difficult to assess. What is needed in such cases is the
ability to take advantage of the extra functionality that software can provide, whilst still being able to make
appropriate safety claims. Architectures like that of the Sizewell safety system promise to do this: in [Littlewood
2000a] the problem of assessing the reliability of such systems is examined in a novel way.

The idea here is that a sufficiently simple secondary system has a possibility of being completely free of design
faults. It may then be possible to claim that the probability of failure on demand of the overall system is simply
the product of the pfd of the primary and probability of incorrectness of the secondary. If the first of these could
be measured (e.g. by simulated realistic testing) at 10-3, and the second estimated (e.g. on the basis of general
experience) at 10-4, a claim for the overall system pfd of 10-7 could be supported.

This is an "independence" argument, but not the discredited claim for independence between failures of two
versions. Here the probabilities concern quite different things - failure on demand, and incorrectness. If the
secondary were a software-based system, sufficiently simple to be open to formal verification by proof, it may be
reasonable to claim that a failure in the proof process was independent of failures on demand of the primary
version.

Notice that here a perfect secondary implies a perfect safety system - failures arising from software faults are
impossible because the secondary always works correctly (with respect to design faults - physical faults are
covered by other assessment procedures). Although certain perfection of the secondary is unlikely in real
applications, the observation reveals how the architecture described here differs from a more conventional 1-out-
of-2 system, where there is often a near symmetry of treatment of the two versions. If the protection function is
intrinsically fairly simple, the secondary can be made simple, with the hope that it can be proven correct with
low probability of error, and the primary can have extensive functionality, since its reliability requirement is
sufficiently modest to be demonstrated by direct evaluation from testing.

5 Diversity in the Development Process

One thing that has struck us forcibly during our recent research has been the sheer ubiquity of diversity. In one
sense this is not surprising: the notion of "two heads are better than one", or "don’t put all your eggs in one
basket" is age-old. On the other hand, the formal models of diversity were developed with quite narrow objectives
- to understand and formalise diversity in software design - and yet they find application in much wider fields.

5 . 1 Application of Diversity in Software Fault Detection and Removal

The work described in [Littlewood 2000d] is concerned with diversity in software development process -
specifically, in procedures for finding and removing software faults in the development of a single program.

We show that the theory of "difficulty functions", previously applied in design diversity, applies here as well.
Here, "difficulty" represents the difficulty of finding a fault. For example, the reliability gains from repeated
applications of a particular fault finding procedure are not statistically independent (there is a law of diminishing
returns) - such an incorrect assumption of independence will always give over-optimistic results. When we have
diverse fault finding procedures, however, things are different: here it is possible for effectiveness to be even
greater than it would be under an assumption of statistical independence. We found theorems which show that, as
in design diversity, diversity of fault finding procedures is "a good thing", and should be applied as widely as
possible.

Most work in the software engineering literature on the efficacy of fault finding procedures is about assessing and
comparing their individual efficacies. This is important, but in practice several of these techniques will be
employed together. There are some well-known intuitions about such combinations of procedures: we all know,
for example, that it is best to use procedures that are effective in some general way; but we equally know that

Design Diversity: an Update from Research on Reliability Modelling

9

any single such procedure may miss a whole class of faults even when applied most extensively. Even when we
know that procedure A is better at fault finding than B, we would be wary of using only A because it may have
little chance of finding certain faults that B instead finds quite easily. Our work formalises intuitions of this kind.

The key to understanding how best to apply different fault finding procedures lies in understanding the interplay
between, on the one hand, the efficacies of the individual procedures (in single and multiple applications), and on
the other hand the dependence between their "difficulty functions". These represent the way in which fault finding
procedures vary in their effectiveness from one fault to another (and from one procedure to another).

Compared with its mathematically similar equivalent in design diversity, this model appears strikingly easier to
apply to practical decisions. In an experiment based on a railway signalling application of diverse fault-finding,
we were able to obtain estimates of the parameters representing procedure effectiveness and diversity, and some
initial evidence that the model could be used for decisions in real projects.

Intuitive notions of diversity in fault finding have been around for a long time, and are used informally quite
extensively, but they have lacked a rigorous formal basis. In particular, it has not been clear what were the
important factors to measure. This work is the start of such a formal measurement-based understanding. We hope
that it will lead to a theory of fault removal that allocates different fault finding procedures optimally, taking
account of the likely distribution of fault types.

We expect to extend this work also to shed light on the role of diversity in the various phases of development of
diverse versions in a fault-tolerant system.

6 Discussion and Future Work

The modelling work we have described has produced some encouraging progress. It is remarkable that the basic
concept of 'variation of difficulty' seems suitable for formalising and understanding so many different problems.

However, we do not hide that many of these results are only useful for better understanding these complex,
counter-intuitive problems: they do not lead to simple, general recipes for design and assessment. Such
understanding is necessary before it is possible to begin engineering diverse fault-tolerant systems with
dependability assurance founded on formal models. An important advantage of the formal models we have
developed is that they provide a precise language for the discussion of some difficult issues: consider, for
example, the rather loose way in which words like "independent" and "diverse" are sometimes used in discussions
about fault tolerance.

Difficulties remain in using some of this theory - most particularly in populating the models with estimates of
their key parameters when dealing with real systems - but we are now in a position to give advice to engineers
on some substantive issues. We can advise on pitfalls in areas where intuition seems to be sometimes very
unreliable. Not all this news is good: e.g. the demonstration that functional diversity does not, of itself,
guarantee the validity of claims for failure independence.

We are now extending this work in various directions, in a set of recently started projects: DISPO-2 (DIverse
Software PrOject-2), DOTS (Diversity with Off-The-Shelf components, in collaboration with the University of
Newcastle-upon-Tyne), and the multi-university collaboration DIRC (Interdisciplinary Research Collaboration in
Dependability of Computer-Based Systems). One of the extensions concerns the application of current models to
practical case studies. Another one is their extension to encompass multiple factors of diversity in development.
We will perform experiments to test some of the conjectures described in section 3. Other important extensions
concern the area of application of diversity and of these modelling methods. For instance, when building systems
out of off-the-shelf software 'of uncertain pedigree', architectures with diverse redundancy can be a cost-effective
means for modest gains in dependability and assurance: they can be built without extensive knowledge of the
internals of the off-the-shelf parts, while taking advantages of their low cost. Last, a form of diversity in
reasoning is commonly used in the area of assessment, by developing two or more complete, 'independent'
arguments to support a critical decision like that of accepting a certain critical system. We will attempt to
formalise and clarify how and to what extent these practices produce additional assurance.

Acknowledgments

This paper is derived from the final report for project DISPO (DIverse Software PrOject), funded by Scottish
Nuclear (later British Energy) at City University and Bristol University. The work described was mostly funded
by project DISPO and by project DISCS (Diversity In Safety Critical Software), funded by the Engineering and
Physical Sciences Research Council at City University and at the University of Newcastle-upon-Tyne.

Design Diversity: an Update from Research on Reliability Modelling

10

References

Note: most papers by the present authors are available at URL:
http://www.csr.city.ac.uk/projects/diversity

[Briere 1993] Briere D., Traverse P.: Airbus A320/A330/A340 Electrical Flight Controls - A Family Of Fault-
Tolerant Systems. Proc. 23rd International Symposium on Fault-Tolerant Computing (FTCS-23): 616-623,
Toulouse, France 1993.

[Djambazov 1995] Djambazov K.B., Popov P.: The effects of testing on the reliability of single version and 1-
out-of-2 software. Proc. 6th Int. Symposium on Software Reliability Engineering, ISSRE'95: 219-228,
Toulouse 1995.

[Eckhardt 1991] Eckhardt D.E., Caglayan A.K., Knight J.C., Lee L.D., McAllister D.F., Vouk M.A., Kelly
J.P.J.: An experimental evaluation of software redundancy as a strategy for improving reliability. IEEE
Transactions on Software Engineering, 17: 692-702, 1991.

[Hatton 1997] Hatton L.: N-Version Design Versus One Good Version. IEEE Software, 14: 71-76, 1997.

[Hunns 1991] Hunns D.M., Wainwright N.: Software-based protection for Sizewell B: the regulator’s
perspective. Nuclear Engineering International, September: 38-40, 1991.

[Knight 1985] Knight J.C., Leveson N.G., Jean L.D.S.: A Large Scale Experiment in N-Version Programming.
Proc. 15th Int. Symp. on Fault Tolerant Computing (FTCS-15): 135-139, Ann Arbor, Michigan, USA 1985.

[Littlewood 1993] Littlewood B., Strigini L.: Validation of Ultra-High Dependability for Software-based
Systems. Communications of the ACM, 36: 69-80, 1993.

[Littlewood 1996] Littlewood B.: The impact of diversity upon common mode failures. Reliability Engineering
and System Safety, 51: 101-113, 1996.

[Littlewood 1999] Littlewood B., Popov P., Strigini L.: A note on reliability estimation of functionally diverse
systems. Reliability Engineering and System Safety, 66: 93-95, 1999.

[Littlewood 2000a] Littlewood B.: The use of proof in diversity arguments. IEEE Transactions on Software
Engineering: to appear, 2000.

[Littlewood 2000b] Littlewood B., Popov P., Strigini L.: Assessment of the Reliability of Fault-Tolerant
Software: a Bayesian Approach. Proc. 19th International Conference on Computer Safety, Reliability and
Security, SAFECOMP'2000: to appear, Rotterdam, the Netherlands 2000.

[Littlewood 2000c] Littlewood B., Popov P., Strigini L.: N-version design Versus one Good Version. Proc.
International Conference on Dependable Systems & Networks (FTCS-30, DCCA-8) - Fast Abstracts: B42-B43,
New York, USA, 2000.

[Littlewood 2000d] Littlewood B., Popov P., Strigini L., Shryane N.: Modelling the effects of combining
diverse software fault removal techniques. IEEE Transactions on Software Engineering: to appear, 2000.

[Littlewood 2000e] Littlewood B., Strigini L. A discussion of practices for enhancing diversity in software
designs, DISPO project technical report, Centre for Software Reliability, City University, 2000.

[Littlewood 2001] Littlewood B., Popov P., Strigini L.: Modelling software design diversity - a review. ACM
Computing Surveys: to appear, 2001.

[Popov 1998a] Popov P., Strigini L., Pizza M. Diverse redundancy against design error: a model of fault
creation and its implications on reliability, DISPO/DISCS projects technical report, Centre for Software
Reliability, City University, 1998.

[Popov 1998b] Popov P.T., Strigini L.: Conceptual models for the reliability of diverse systems - new results.
Proc. 28th International Symposium on Fault-Tolerant Computing (FTCS-28): 80-89, Munich, Germany 1998.

[Popov 1999a] Popov P., Strigini L. The reliability of diverse systems: a contribution using modelling of the
fault creation process, DISPO/DISCS projects technical report, Centre for Software Reliability, City University,
1999.

[Popov 1999b] Popov P., Strigini L., May J., Kuball S. Estimating Bounds on the Reliability of Diverse
Systems, DISPO project technical report, Centre for Software Reliability, City University, London, 1999.

[Popov 1999c] Popov P., Strigini L., Romanovsky A.: Choosing effective methods for design diversity - how
to progress from intuition to science. Proc. SAFECOMP '99, 18th International Conference on Computer
Safety, Reliability and Security: 272-285, Toulouse, France 1999.

Design Diversity: an Update from Research on Reliability Modelling

11

[Popov 2000] Popov P., Strigini L., Littlewood B.: Choosing between Fault-Tolerance and Increased V&V for
Improving Reliability. Proc. International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'2000), Monte Carlo Resort, Las Vegas, Nevada, USA 2000.

